博碩士論文 106322032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.21.93.81
姓名 黃柏瑋(Po-Wei Huang)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 市區公車場站選址暨電力補充設施配置最佳化
(Optimization model for city bus depot and charging station location problems)
相關論文
★ 橋梁檢測人力機具排班最佳化之研究★ 勤業務專責分工下消防人員每日勤務排班最佳模式之研究
★ 司機員排班作業最佳化模式之研究★ 科學園區廢水場實驗室檢驗員任務指派 最佳化模式之研究
★ 倉儲地坪粉光工程之最佳化模式研究★ 生下水道工程工作井佈設作業機組指派最佳化之研究
★ 急診室臨時性短期護理人力 指派最佳化之探討★ 專案監造人力調派最佳化模式研究
★ 地質鑽探工程人機作業管理最佳化研究★ 職業棒球球隊球員組合最佳化之研究
★ 鑽堡於卵礫石層施作機具調派最佳化模式之研究★ 職業安全衛生查核人員人力指派最佳化研究
★ 救災機具預置最佳化之探討★ 水電工程出工數最佳化之研究
★ 石門水庫服務台及票站人員排班最佳化之研究★ 空調附屬設備機組維護保養排程最佳化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 隨著都市人口急速上升,市區公車耗油量逐年突破歷史新高,綠色運具概念隨著科技進步,電動公車也逐步加入營運車隊中。公車系統老舊缺乏更新造成服務水準下降,早期營運業者在選擇場站時,常因土地便宜進而將場站設置於市中心,而電動公車所需之電力補充及其他設施的設置位置也經常使用人工經驗選擇,缺乏整體系統性規劃。因此,本研究以系統最佳化之觀點,發展一市區公車場站區位暨電力補充設施配置模式,希望能有效協助業者在規劃停放場站設立位置、電力補充設施配置以及每日發車路線時做決策。
本研究以數學規劃方式,在滿足實務相關限制條件下,以追求最小化營運總成本為目標,構建出市區公車場站區位暨電力補充設施配置模式。而因問題規模龐大,本研究利用分段及分解概念發展一啟發式演算法進行求解。為評估模式之實用性,本研究以桃園某客運公司提供資料為例進行範例測試,為確保模式在其他規模更大之城市之可用性,本研究以合理假設擴大範例測試規模,並測試不同參數之敏感度分析和方案分析,結果顯示本研究之模式在實務上能有效運作,可提供給市區客運業者做為停放場站設立、電力補充設施配置以及發車路線規劃之參考。
摘要(英) With the rapid increase of urban population, the fuel consumption of urban buses has broken through the historical highs year by year. With the advancement of science and technology, electric buses have gradually joined the operational fleet. The lack of renewal of the buses system has led to a decline in service levels. In the past, operators often set up the depot in the city center because of the cheap land, the power supply and other facilities required for the electric bus were often using previous experience selection, lacking overall systemic planning. Therefore, this study develops a model for urban buses depot location and charging station facilities allocation determining, hoping to effectively assist operators making their decisions in setting up parking spaces, setting up charging station facilities, and daily departure routes.
In this study, mathematical planning method is employed to formulate an optimal model for city buses depot location and charging station facilities allocation determining. The proposed is minimize the total operating cost, and satisfied with related limits. Due to the large scale of the problem, this study uses the segmentation and decomposition concept to develop a heuristic algorithm to solve. In order to assess the practicability of the model, this study uses the data provided by a bus operator in Taoyuan City as an example to test the model. Ensuring the availability of the model in other cities of larger scale, this study expands the scale of test with reasonable assumptions and tests different parameters. Sensitivity analysis and different scenarios analysis show that the model of this study can be effectively operated in practice. Provide reference to urban bus operators for parking depot establishment, power supplement facilities configuration and leaving routes plan.
關鍵字(中) ★ 混合營運
★ 電動公車
★ 區位問題
★ 充電設施
★ 車輛分配
★ 最佳化
關鍵字(英) ★ mixed operation
★ electric buses
★ location problem
★ charging station
★ bus allocation
★ optimization
論文目次 摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究目的與範圍 3
1.3 研究方法與流程 4
第二章 文獻回顧 6
2.1 電動公車 6
2.2 公車場站區位規劃 8
2.3 電力補充設施區位模式 10
2.4 大型整數規劃問題啟發式演算法之相關文獻 11
2.5 文獻評析 13
第三章 模式建構 14
3.1 問題描述 14
3.2 模式架構 15
3.2.1 基本假設與已知訊息 15
3.2.2 符號說明 19
3.2.3 數學定式 21
3.3 模式驗證 24
3.4 模式求解方法 26
3.5 小結 31
第四章 範例測試 32
4.1資料輸入 32
4.1.1目前公車場站相關資料 32
4.1.2候選公車場站相關資料 35
4.1.3營運車輛、空駛里程及電力補充設施成本相關資料 37
4.1.4日規劃需求資料 40
4.2模式發展 42
4.2.1問題規模 42
4.2.2電腦演算環境與設定 43
4.2.3模式輸入資料 43
4.2.4模式輸出資料 44
4.3測試結果與分析 44
4.4敏感度分析 48
4.4.1營運車隊規模敏感度分析 48
4.4.2車公里成本敏感度分析 50
4.4.3 候選場站租金費用敏感度分析 53
4.4.4 候選場站容量敏感度分析 54
4.5方案分析 56
4.5.1路線電動化比例之方案分析 56
4.5.2特殊場站撤除限制之方案分析 57
4.6小結 59
第五章 結論與建議 60
5.1結論 60
5.2建議 62
參考文獻 63
附錄 66
附錄A 場站至發車站配置(擴大規模) 66
附錄B 場站至發車站配置(現況) 68
參考文獻 1.行政院(2017),「空氣污染防制行動方案」。
2.行政院環境保護署(2012),「空氣品質改善維護資訊網」。
取自https://air.epa.gov.tw/News/news.aspx?ID=602
3.林至康(2008),「汽車客運多場站車輛排程問題之研究」,國立交通大學運輸科技與管理學系博士論文。
4 林妤玲(2017),「廢棄機車清運排程暨回收場選址最佳化之研究」,國立中央大學土木工程學系碩士論文。
5.陳泓彰(2017),「考量再生能源及需量反應之電動公車運輸系統電池充放電排程研究」,國立澎湖科技大學電機工程系電資碩士論文。
6.財團法人車輛測試研究中心(2014),「電動巴士運行資料評估技術」。取自https://www.artc.org.tw/chinese/03_service/03_02detail.aspx?pid=2682
7.劉祥宇(2013),「市區電動公車換電站之區位選擇研究」,國立台灣大學土木工程學研究所碩士論文。
8.葉宗昇(2006)「混合固定與隨機需求下捷運車廂檢修人力供給規劃之研究」國立中央大學土木工程學系碩士論文。
9.Agin, N. I., & Cullen, D. E. (1975). Algorithm for transportation routing and vehicle loading. Logistics, pp. 1-20, North Holland, Amsterdam.
10.Barnhart, C., Johnson, E. L., Nemhauser, G. L., Savelsbergh, M. W., & Vance, P. H. (1998). Branch-and-price: Column generation for solving huge integer programs. Operations research, 46(3), 316-329.
11.Dong, J., Liu, C., & Lin, Z. (2014). Charging infrastructure planning for promoting battery electric vehicles: An activity-based approach using multiday travel data. Transportation Research Part C: Emerging Technologies, 38, 44-55.
12.Dong, J., & Zhang, L. (2017). Optimal Placement of Iowa DOT Maintenance Garages: Muscatine and Dubuque Case Studies(No. InTrans Project 15-534). Ames, Iowa: Institute for Transportation, Iowa State University, Iowa Department of Transportation.
13.Eliiyi, U., Nasibov, E., Özkılçık, M., & Kuvvetli, Ü. (2012). Minimization of fuel consumption in city bus transportation: A case study for Izmir. Procedia-Social and Behavioral Sciences, 54, 231-239.
14.Fatta, D., Saravanos, P., & Loizidou, M. (1998). Industrial waste facility site selection using geographical information system techniques. International Journal of Environmental Studies, 56(1), 1-14.
15.e, J., Yang, H., Tang, T. Q., & Huang, H. J. (2018). An optimal charging station location model with the consideration of electric vehicle’s driving range. Transportation Research Part C: Emerging Technologies, 86, 641-654.
16.He, Y., Song, Z., & Liu, Z. (2019). Fast-charging station deployment for battery electric bus systems considering electricity demand charges. Sustainable Cities and Society, 48, 101530.
17.Ke, B. R., Chung, C. Y., & Chen, Y. C. (2016). Minimizing the costs of constructing an all plug-in electric bus transportation system: A case study in Penghu. Applied energy, 177, 649-660.
18.Khalil, M. I. (2011). Reducing the vehicles fuel consumption by using the optimization technique. Journal homepage: www. IJEE. IEEFoundation. org, 2(3), 543-550.
19.Lajunen, A. (2014). Energy consumption and cost-benefit analysis of hybrid and electric city buses. Transportation Research Part C: Emerging Technologies, 38, 1-15.
20.Mathirajan, M., Hariharakrishnan, C. V., & Ramachandran, V. (2010). An experimental evaluation of heuristic algorithms for bus-depot matching problem of urban road transport systems. Opsearch, 47(2), 143-157.
21.Noel, L., & McCormack, R. (2014). A cost benefit analysis of a V2G-capable electric school bus compared to a traditional diesel school bus. Applied Energy, 126, 246-255.
22.Rogge, M., van der Hurk, E., Larsen, A., & Sauer, D. U. (2018). Electric bus fleet size and mix problem with optimization of charging infrastructure. Applied energy, 211, 282-295.
23.Wang, N., Li, Y., & Liu, Y. (2014, October). Economic evaluation of electric bus charging infrastructure. In 17th International IEEE Conference on Intelligent Transportation Systems (ITSC) (pp. 2799-2804). IEEE.
24.Wang, X., Yuen, C., Hassan, N. U., An, N., & Wu, W. (2017). Electric vehicle charging station placement for urban public bus systems. IEEE Transactions on Intelligent Transportation Systems, 18(1), 128-139.
25.Wang, Y., Huang, Y., Xu, J., & Barclay, N. (2017). Optimal recharging scheduling for urban electric buses: A case study in Davis. Transportation Research Part E: Logistics and Transportation Review, 100, 115-132.
26.Wei, R., Liu, X., Ou, Y., & Fayyaz, S. K. (2018). Optimizing the spatio-temporal deployment of battery electric bus system. Journal of Transport Geography, 68, 160-168.
27.Willoughby, K. A. (1993). BUBLS: a mixed integer program for transit centre location in the lower mainland (Doctoral dissertation, University of British Columbia).
28.Willoughby, K. A., & Uyeno, D. H. (2001). Resolving splits in location/allocation modeling: a heuristic procedure for transit center decisions. Transportation Research Part E: Logistics and Transportation Review, 37(1), 71-83.
29.Willoughby, K. A. (2002). A mathematical programming analysis of public transit systems. Omega, 30(3), 137-142.
30.Xylia, M., Leduc, S., Patrizio, P., Kraxner, F., & Silveira, S. (2017). Locating charging infrastructure for electric buses in Stockholm. Transportation Research Part C: Emerging Technologies, 78, 183-200.
31.Yan, S., Chi, C. J., & Tang, C. H. (2006). Inter-city bus routing and timetable setting under stochastic demands. Transportation Research Part A: Policy and Practice, 40(7), 572-586.
32.Yan, S., & Shih, Y. L. (2009). Optimal scheduling of emergency roadway repair and subsequent relief distribution. Computers & Operations Research, 36(6), 2049-2065.
33.Yan, S., Tang, C. H., & Fu, T. C. (2008). An airline scheduling model and solution algorithms under stochastic demands. European Journal of Operational Research, 190(1), 22-39.
指導教授 顏上堯(Shang-Yao Yan) 審核日期 2019-7-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明