博碩士論文 106322062 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:3.16.130.170
姓名 葉佳煊(Jia-Hsuan Yeh)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 熱養護混凝土應用於低放射性廢棄物盛裝容器之障壁功能試驗評估
相關論文
★ 電弧爐氧化碴特性及取代混凝土粗骨材之成效研究★ 路基土壤回彈模數試驗系統量測不確定度與永久變形行為探討
★ 工業廢棄物再利用於營建工程粒料策略之研究★ 以鹼活化技術資源化電弧爐煉鋼還原碴之研究
★ 低放處置場工程障壁之溶出失鈣及劣化敏感度分析★ 以知識本體技術與探勘方法探討台北都會區道路工程與管理系統之研究
★ 電弧爐煉鋼爐碴特性及取代混凝土粗骨材之研究★ 三維有限元素應用於柔性鋪面之非線性分析
★ 放射性廢料處置場緩衝材料之力學性質★ 放射性廢料深層處置場填封用薄漿之流變性與耐久性研究
★ 路基土壤受反覆載重作用之累積永久變形研究★ 還原碴取代部份水泥之研究
★ 路基土壤反覆載重下之回彈與塑性行為及模式建構★ 重載交通荷重對路面損壞分析模式之建立
★ 鹼活化電弧爐還原碴之水化反應特性★ 電弧爐氧化碴為混凝土骨材之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低放射性廢棄物處置設施工程障壁由混凝土所組成,不同於一般混凝土結構用途,其服務年限需長達數百年之久。考量未來國內最終處置場之場址可能位於濱海區域,混凝土容器長期處於此環境下,對混凝土所造成之劣化與耐久性的影響顯著。
  本研究延續先前研究團隊製作用於低放射性廢棄物處置容器用混凝土桶身及填充材料之配比HIC-C與配比HIC-M及配比C與配比M進行單一方向氯離子入侵濃度試驗,以表面氯離子濃度及擴散係數隨時間長期發展趨勢,進行配比之服務年限推估,且利用信賴區間概念與亂數模擬方法,推估盛裝容器混凝土在服務年限內發生腐蝕破壞的風險。
為提升低放射性廢棄物處置盛裝容器用混凝土之品質,延續先前研究團隊所採用80℃(三天及四天)及本研究新增90℃(兩天及三天)之熱養護方法製作試體,進行抗壓強度、孔隙率、乾縮、壓力下水貫入深度、氮氣吸附及電阻率試驗,並將結果與23℃常溫養護試體加以比較,藉由統計方法針對不同養護方式之主要實驗結果進行單因子變異數分析,整合試驗結果顯示,高溫養治兩種混凝土配比之各項性質顯著優於常溫養治混凝土,且高溫養治試體中,以80℃養護四天為較佳養護方式。
  利用非破壞且快速量測混凝土表面電阻方式,針對可能具有瑕疵之混凝土試體進行電阻量測,將試驗結果藉由統計分析,結果顯示使用非破壞性表面電阻檢測作為容器混凝土不同階段驗收檢驗方法應具可行性。
摘要(英) The concrete used for making containers for low-level radioactive wastes is different from typical structural concrete that it is subjected to a prolonged service period.
  This study extends the investigations on the mixes of HIC-C, HIC-M and mixes C and M used for highly integrated containers (HIC) by continuing measurements on the surface chloride ion concentration and diffusion coefficient of these mixes, such that the long-term behavior of chloride ingress into the mixes is carefully evaluated.
  In order to improve the performance of the concrete mixes, specimens were thermally cured at 80℃ and 90℃ for 2 to 4 days and then tested for compressive strength, porosity, drying shrinkage, water penetration depth, gas adsorption and electrical resistivity. And the results were compared with the 23℃ normal temperature cured test specimens. Based on statistical analysis results, the concrete mixes cured at high temperature are found to show improved quality than those cured at normal temperature. with the 4-day curing at 80℃ having the most improvement.
  Using the non-destructive and rapid measurements on concrete surface resistance, it was able to differentiate concrete specimens with crack and/or damage. Statistical analysis results indicate that surface resistance can be used as a means of acceptance measurement for concrete containers.
關鍵字(中) ★ 容器混凝土
★ 氯離子擴散
★ 熱養護
★ 表面電阻率
關鍵字(英) ★ Concrete Canister
★ Chloride diffusion
★ Heat curing
★ Surface resistivity
論文目次 摘要.....................i
Abstract..............iii
致謝..............v
目錄..............vii
圖目錄..............xi
表目錄..............xvii
第一章 緒論..............1
1.1 研究背景..............1
1.2 研究目的..............1
1.3 研究內容..............2
第二章 文獻回顧..............5
2.1 低放射性廢棄物..............5
2.1.1 放射性廢棄物來源與特性..............5
2.1.2 低放射性廢棄物最終處置場案例..............6
2.2 氯離子擴散..............15
2.2.1 氯離子擴散機制..............15
2.2.2 添加卜作嵐摻料對氯離子擴散影響..............17
2.2.3 氯離子擴散係數及時間因子..............18
2.3 程式Life-365簡介..............20
2.3.1 發展背景..............20
2.3.2 參數設定..............22
2.3.3 發展背景..............24
2.4 服務年限推估模式..............26
2.4.1 表層氯離子..............26
2.4.2 擴散係數推估方式..............28
2.4.3 時間因子推估方式..............30
2.4.4 表面氯離子推估方式..............32
2.5 混凝土耐久性評估..............34
2.5.1 高溫養護對混凝土品質影響..............34
2.5.2 影響混凝土電阻率因素..............38
2.5.3 表面電阻率與其他相關性試驗..............42
2.5.4 不同飽和方法對混凝土孔隙率量測..............44
2.5.5 混凝土收縮機制..............45
第三章 實驗材料與規劃..............49
3.1 實驗材料..............49
3.2 實驗設備..............52
3.3 實驗內容及方法..............57
3.3.1 實驗流程..............57
3.3.2 實驗變數..............60
3.3.3 實驗方法..............63
第四章 氯離子入侵實驗結果與分析..............77
4.1 ASHTO T259與ASTM C1556相關規範..............77
4.2 氯離子入侵混凝土濃度量測及分析(ASTM)..............80
4.2.1 配比C與配比M之氯離子濃度剖面(ASTM)..............80
4.2.2 瞬時擴散係數D與表面氯離子濃度CS(ASTM)..............81
4.2.3 時間因子m值計算(ASTM)..............84
4.2.4 瞬時擴散係數之推估方法(ASTM)..............86
4.3 氯離子入侵混凝土濃度量測及分析(AASHTO)..............88
4.3.1 配比HIC-C與配比HIC-M之濃度剖面..............88
4.3.2 視擴散係數(Dapp)與表面氯離子濃度(CS)..............90
4.3.3 時間因子m值計算(AASHTO)..............94
4.3.4 視擴散係數轉換成瞬時擴散係數之推估(AASHTO)..........99
4.3.5 表面氯離子濃度CS推估(AASHTO)..............100
4.3.6 AASHTO T259與ASTM C1556試驗結果比較..............102
4.4 服務年限推估..............106
4.4.1 時間內受氯離子入侵之服務年限(AASHTO)..............108
4.4.2 短時間內受氯離子入侵之服務年限(ASTM)..............110
4.5 配比HIC信賴度與亂數模擬..............112
第五章 高溫養護之成效..............127
5.1 抗壓強度試驗..............127
5.2 孔隙率試驗..............129
5.2.1 混凝土孔隙率..............129
5.2.2 水泥漿體孔隙率..............131
5.3 氮氣吸附試驗結果與分析..............134
5.3.1 孔隙分布..............134
5.3.2 孔隙結構分類..............140
5.4 水貫入深度試驗..............145
5.5 乾縮試驗..............146
5.6 氯離子浸泡試驗(ASTM C1556)..............148
5.7 表面電阻率試驗..............156
5.8 試驗結果分析..............163
5.8.1 抗壓強度統計分析..............163
5.8.2 混凝土孔隙率統計分析..............165
5.8.3 圓柱試體電阻率..............170
5.8.4 板試體電阻率..............178
5.8.5 裂縫板試體電阻率..............179
第六章 結論與建議..............183
6.1 結論..............183
6.2 建議..............185
參考文獻..............186
附錄..............192
參考文獻 台灣電力公司:http://www.taipower.com.tw/
行政院原子能委員會:http://www.aec.gov.tw/
經濟部低放射性廢棄物最終處置:http://www.llwfd.org.tw/index.aspx
王茂齡(1987),輸送現象,高立圖書有限公司。
王心荻,「試體參數對混凝土電阻值影響之研究」,碩士論文,國立台灣海洋大學,基隆(2009)。
行政院原子能委員會,低放射性廢棄物(低階核廢料)最終處置的安全管理(2014)。
牟妍樺,「低放處置場混凝土工程障壁受氯離子侵襲之服務年限信賴度研究」,碩士論文,國立中央大學土木工程研究所,中壢(2013)。
李金輝,「黃氏富勒緻密配比設計法應用於活性粉混凝土性質之研究」,碩士論文,國立台灣科技大學,台北(2006)。
吳桂卿,「不同養護溫度條件對提升障壁混凝土品質之成效」,碩士論文,國立中央大學土木工程研究所,中壢(2016)。
莊美玲,「活性粉混凝土應用於低放射性廢棄物最終處置場工程障壁材料之耐久性評估」,博士論文,國立中央大學土木工程研究所,中壢(2014)。
陳昱安,「低放處置場工程障壁受氯離子侵蝕服務年限預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2012)。
陳品臻,「低放處置場混凝土障壁受氯離子入侵之使用年限推估」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
陳雅文,「低放射性最終處置場障壁混凝土以熱養護提升品質之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2018)。
彭琦茵,「障壁混凝土受氯離子入侵剖面及使用年限推估之方法比較」,碩士論文,國立中央大學土木工程研究所,中壢(2015)。
廖文佑,「低放射性廢棄物盛裝容器混凝土品質檢測之研究」,碩士論文,國立中央大學土木工程研究所,中壢(2017)。
羅欣蕙,「低放射性廢棄物障壁混凝土受氯離子入侵之劣化及預估研究」,碩士論文,國立中央大學土木工程研究所,中壢(2011)。
AASHTO T259-02 Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration.
AASHTO T260-97 Standard Method of Test for Sampling and Testing for Chloride Ion in Concrete and Concrete Raw Materials.
AASHTO T358-15 Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration.
Ann, K.Y., Ahn, J. H., and Ryou, J. S. (2009), “The importance of chloride content at the concrete surface in assessing the time to corrosion of steel in concrete structures.” Construction and Building Materials, Vol. 23, pp. 239- 245.
ASTM C1556-11 Standard Test Method for Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion.
ASTM C1152-12 Standard Test Method for Acid-Soluble Chloride in Mortar and Concrete1.
ASTM C642-13 Standard Test Method for Density, Absorption, and Voids in Hardened Concrete.
Bai, J., Wild, S., and Sabir, B. B. (2003). “Chloride ingress and strength loss in concrete with different PC-PFA-MK binder compositions exposed to synthetic seawater.” Cement and Concrete Research, Vol. 33, pp. 353-362.
Bandelj, B., Saje, D., Šušteršič, J., Lopatič, J., and Saje, F. (2011). “Free Shrinkage of High Performance Steel Fibre Reinforced Concrete.” Journal of Testing and Evaluation, 39(2), 166-176.
BS EN 12390-8 Depth of penetration of water under pressure.
Chalee, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009). “Predicting the chloride penetration of fly ash concrete in seawater.” Marine structures, Vol. 22, No.1, pp. 341-353.
DataFit (URL):http://www.curvefitting.com/.
Frazao, C., Camoes, A., Barros, J., and Goncalves, D.(2015). “Durability of steel fiber reinforced self-compacting concrete.” Construction and Building Materials, Vol. 80, pp. 155-166.
Gettu, R., Gardner D.R., Saldivar H., and Barragfin B.E.(2005). “Study of the distribution :and orientation of fibers in SFRC specimens ”, Materials and Structures, Vol. 38, pp. 31-37.
Gowers, K. R., and Millard, S. G. (1999). “Measurement of concrete resistivity for assessment of corrosion severity of steel using wenner technique” ACI Materials Journal , Vol. 96, No. 5, pp.536-541.
Jussara, T., Ardani, A. (2012). “Surface Resistivity Test Evaluation as an Indicator of the Chloride Permeability of Concrete”, Federal Highway Administration.
Kim, J., McCarter, W. J., Suryanto, B., Nanukuttan, S., Basheer, P. A. M., and Chrisp, T. M. (2016). “Chloride ingress into marine exposed concrete: A comparison of empirical- and physically- based models” Cement and Concrete Composites, Vol.72, pp. 133-145.
Khan, K., and Amin, M. N. (2017) “Influence of fineness of volcanic ash and its blends with quarry dust and slag on compressive strength of mortar under different curing temperatures” Construction and Building Materials, Vol.154, pp. 514-528.
Lee, N. P., and Chisholm, D, H. (2005). “Reactive powder concrete” Study Report SR 146, BRANZ Ltd, Judgeford, New Zealand.
Leng, F., Feng, N., and Lu, X. (2000). “An experimental study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace salg concrete.” Cement and Concrete Research, Vol. 30, pp. 989-992.
Life-365 (URL):http://www.life-365.org/.
Life-365 Service Life Prediction Model and Computer Program for Predicting the Service Life and Life-Cycle Costs of Reinforced Concrete Exposed to Chlorides” (2013).
Mangat, P.S., and Molloy, B.T. (1994). “Prediction of long term chloride concentration in concrete.” Material and structures, Vol. 27, pp. 338-346.
Morris, W., Moreno, E.I., and SagiiCs, A.A.(1996). “Practical evaluation of resistivity of concrete in test cylinders using a wenner array probe.” Cement and Concrete Research, Vol. 26, No. 12, pp. 1779-1787.
Nokken, M., Boddy, A., Hooton, R.D., and Thomas, M.D.A. (2006). “Time dependent diffusion in concrete−three laboratory studies.” Cement and concrete research, Vol. 36, No. 1, pp. 200-207.
Pack, S. W., Jung, M. S., Song, H. W.,Kim, S. H., and Ann, K. Y. (2010). “Prediction of time dependent chloride transport in concrete structures exposed to a marine environment” Cement and Concrete Research, Vol. 40, pp. 302-312.
Peng, L., Zhiwu, Y., Zhaohui, L., Ying, C., and Xuaijie, L. (2016). “Predictive convection zone depth of chloride in concrete under chloride environment” Cement and concrete composites, Vol. 72, pp. 257-267.
Polder, R.B. (2001). “Test methods for on site measurement of resistivity of concrete a RILEM TC-154 technical recommendation.” Construction and Building Materials, pp. 125-131.
Ramezanianpour, A.A., Pilvar, A., Mahdikhani, M., and Moodi, F. (2011). “ Practical evaluation of relationship between concrete resistivity, water penetration, rapid chloride penetration and compressive strength”, Construction and Building Materials, Vol. 25, pp. 2472–2479.
Safiuddin, Md., and Hearn, N.(2005). “Comparison of ASTM saturation techniques for measuring the permeable porosity of concrete” Cement and Concrete Research, Vol. 35, pp1008-1013.
Sengul, O.(2014). “Use of electrical resistivity as an indicator for durability”, Construction and Building Materials, Pages 434–441.
Sherman, R.M., David, M.B., and Pfeifer, D.W. (1996). “Durability aspects of precast prestressed Concrete-Part 1 and 2.” Journal of PCI, Vol. 41, No. 4, pp. 60-64.
Song, S., Jiang, L.,Jiang, S., Yan,X., and Xu, N. (2018). “The mechanical properties and electrochemical behavior of cement paste containing nano-MgO at different curing temperature” Construction and Building Materials, Vol. 164, pp. 663–671.
Song, H.W., Lee, C.H., and Ann, K.Y. (2008). “Factors influencing chloride transport in concrete structures exposed to marine environments,” Cement and concrete composites, Vol. 30, pp. 113-121.
Stanish, K., Thomas, M. (2003). “The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients.” Cement and concrete research, Vol. 33, pp. 55-62.
Yimou, A., Chengbin, D.,and Faliang. (2008). “Concrete crack measurement by electrical resistivity” Journal of Southeast University, Vol. 38, No.2, pp.289-292.
Young, J.F., Mindess, S., and Darwin, D. (2002). Concrete, Prentice Hall, Inc., Upper Saddle River, New Jersey, U.S.A..
Zanni, H., Cheyrezy, M., Maret, V., Philippot, S., and Nieto, P. (1996). “Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using “Si NMR”.” Cement and concrete research , Vol. 26, pp. 93-100.
指導教授 黃偉慶 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明