博碩士論文 106322601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.226.177.125
姓名 林光葵(Riandy Halim)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(CYCLIC BEHAVIOR OF STEEL CORRUGATED PLATE DAMPER AND ITS APPLICATION TO STRUCTURAL PERFORMANCE IMPROVEMENT)
相關論文
★ 隅撐鋼結構耐震性能研究★ 含斜拉鋼筋之中空複合構件於三維載重下之耐震行為
★ 應用不同尺度隅撐之鋼結構耐震性能研究★ 雙孔中空複合構件耐震性能研究
★ 具挫屈控制機制之隅撐構架耐震行為研究★ 圓形中空複合構材耐震性能研究
★ 多層多跨隅撐鋼結構之耐震性能研究★ 隅撐抗彎構架之性能設計研究與分析
★ 配置開槽消能鋼板之預力式橋柱耐震性能研究★ 具鋼板消能裝置之隅撐結構耐震行為研究
★ 中空鋼骨鋼筋混凝土耐震補強有效性研究★ 具自復位隅撐鋼結構耐震性能研究
★ 具自復位梁柱接頭隅撐鋼結構耐震性能研究★ 具消能隅撐內框架之構架耐震性能研究
★ 具摩擦消能機制之Y型隅撐鋼結構耐震性能研究★ 全鋼線網圍束中空複合構材之扭轉撓曲行為研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 金屬阻尼器是一種用於吸收能的裝置阻尼器可以連接在現有結構或先結構上阻尼器可通過其自身的變形來吸收能量。例如黏制阻尼器、摩擦阻尼器、降伏阻尼器等等。本研究中提出一種舉材料降伏及摩擦消能機制之波紋阻尼器進行探討。
波紋阻尼器主要由三個部分組成,包含彎曲的鋼板,以及兩個放置於鋼板頂部和底部的邊界框,邊界框表面有一個波紋,可用以彎曲鋼板。鋼板之二側連接到梁上,兩個邊界框由A型斜撐支撐並連接到下梁。
當波紋阻尼器作用時上下樓層產生相對位移,因此鋼板將移動,鋼板移動時,其將因摩擦力的組合有效消散能量。本研究中同時針對應用此波紋阻尼器之結構進行耐震性能評估,研究結果顯示配置此阻尼器之結構受震時可有效減少其反應證實此阻尼器具有適當之應用潛力。
摘要(英) i
ABSTRACT
There are many devices that’s already invented to encounter earthquake problem. One of the devices is called damper. Damper is a device that earmarked to adsorb an energy, so the energy that subjected on the structure can diminished. Damper can be attached on the existing structure or to a new structure.
Dampers can be categorized by the mechanism of itself to adsorb the energy. For examples there is viscous damper, friction damper, yield damper, and many others. For this research, it will discuss about the metallic damper that used yield and friction to dissipated the energy. Metallic damper is one kind of energy dissipation devices in structure passive control. During the earthquake or wind, structure vibration could be well controlled through energy dissipation with hysteretic deformation.
In this research, the main point is it wants to overcome disadvantage that consist in several model of metallic damper. As we know, most of the metallic damper dissipated energy by using the yield of itself, but the yielding point just occurs in some of the part of the damper, and the other parts remain elastic. This research wants to proposed a new model of metallic damper, that the yielding will occur in most of the part of the damper, the name the damper is corrugated plate damper.
Corrugated plate damper consists of three main parts, the steel plate that will be bend, and two of the bounding boxes which will be put on the top and bottom of the steel plate with a corrugated pattern on one of its surfaces that will bend the steel plate. The steel plate will be attached to the upper beam, and two of the bounding boxes will be support by an A-support and connected to the lower beam.
Corrugated plate damper use drift story of two floor to generated relative displacement between lower beam and upper beam, so when there is a relative displacement between two of it, the plate will be moved and when the steel plate is move, it will follow the pattern that has been determined by the bounding box. So, corrugated plate damper is a metallic damper that will dissipate energy by combine yielding from the bending of the steel plate and friction because the contact of the steel plate and the boundary boxes simultaneously.
關鍵字(中) ★ 波紋
★ 阻尼器
★ 消散
★ 彎曲
★ 摩擦
關鍵字(英) ★ Corrugated
★ Damper
★ Dissipated
★ Bending
★ Friction
論文目次 Cover .................................................................................................................................... 0
Abstract ................................................................................................................................. i
抽象 ....................................................................................................................................... ii
Acknowledgements ............................................................................................................... iii
Table of Contents ................................................................................................................. iv
List of Tables ........................................................................................................................ viii
List of Figures ....................................................................................................................... xi
Chapter 1: Introduction ......................................................................................................... 1
1.1 Introduction ........................................................................................................ 1
1.2 Motivations ......................................................................................................... 2
1.3 Limitations .......................................................................................................... 3
1.4 Objectives ........................................................................................................... 3
Chapter 2: Literature Review ............................................................................................... 4
2.1 Earthquake Resistant Building ........................................................................... 4
2.2 Advantages of Steel Structure ............................................................................ 6
2.3 Portal Frame Application .................................................................................... 7
2.3.1 Moment Frame Mechanism ...................................................................... 8
2.3.2 Braced Frame Mechanism ........................................................................ 8
2.4 Characteristic of Damper .................................................................................... 9
2.4.1 Passive Damper ........................................................................................ 10
2.4.2 Active Damper ......................................................................................... 11
2.4.3 Metallic damper ....................................................................................... 12
2.4.4 Friction Damper ....................................................................................... 14
2.5 Equivalent Viscous Damping .............................................................................. 15
v
2.5.1 Material (Hysteretic) Damping ................................................................ 18
2.6 Heat Treatment ................................................................................................... 18
2.7 Stage of Plastic Hinge ......................................................................................... 19
Chapter 3: Methodology ....................................................................................................... 21
3.1 Four hinge Mechanism ....................................................................................... 21
3.2 Behavior of Corrugated Plate Damper ............................................................... 21
3.3 Bending of The Plate .......................................................................................... 22
3.4 Friction of The Plate ........................................................................................... 26
3.5 Influence of Gap to Damper Strength.................................................................. 27
3.6 Coefficient of Modification for Strength Evaluation ......................................... 27
3.7 Two-Dimensional Frame Simulation ................................................................. 28
Chapter 4: Experimental Program ........................................................................................ 30
4.1 Concept of Specimens ........................................................................................ 30
4.2 Details of Specimen ............................................................................................ 30
4.3 Materials .............................................................................................................. 33
4.4 Assembly of Specimen ........................................................................................ 33
4.5 Instrumentation ................................................................................................... 34
4.5.1 Strain Gauges ........................................................................................... 34
4.5.2 Data Acquisition System .......................................................................... 34
4.6 Lateral Support ................................................................................................... 35
4.7 Loading Protocol ................................................................................................ 35
4.8 Seismic Evaluation ............................................................................................. 36
Chapter 5: Result and Observation ....................................................................................... 38
5.1 Experimental Result ........................................................................................... 38
5.1.1 Friction Test .............................................................................................. 38
5.1.2 T6G3-C .................................................................................................... 39
5.1.3 T6G1-C .................................................................................................... 40
5.1.4 T9G3-C .................................................................................................... 40
5.1.5 T9G1-C .................................................................................................... 41
5.1.6 T12G3-C .................................................................................................. 42
vi
5.1.7 T6G3-F ..................................................................................................... 43
5.1.8 T6G1-F ..................................................................................................... 44
5.1.9 T9G1-F ..................................................................................................... 44
5.1.10 T9G3-F ................................................................................................... 45
5.2 Calculation Result of Test Specimens ................................................................. 46
Chapter 6: Comparison and Discussions .............................................................................. 47
6.1 General ................................................................................................................ 47
6.2 Experimental Comparison .................................................................................. 47
6.2.1 Test Series T6 Under Fema Loading Protocol ......................................... 47
6.2.2 Test Series T9 Under Fema Loading Protocol ......................................... 48
6.2.3 Test Series T6 Under Fatigue Test ........................................................... 48
6.2.4 Test Series T9 Under Fatigue Test ........................................................... 49
6.2.5 Stiffness of Corrugated plate damper........................................................ 49
6.2.6 Equivalent Viscous Damping Ratio Comparison .................................... 50
6.2.7 Comparison of performance for All Specimens ...................................... 50
6.3 Comparison Between Calculation and Experimental Results ............................ 51
6.4 Two-Dimensional of Frame Seismic Evaluation ................................................ 52
6.4.1 Structure Without Damper Simulation .................................................... 52
6.4.1.1 Structure Subjected to Santa Monica Ground Motion ................. 53
6.4.1.2 Structure Subjected to Altadena Ground Motion ......................... 54
6.4.1.3 Structure Subjected to Corralitos Ground Motion ....................... 55
6.4.2 Structure with Corrugated Damper Simulation ....................................... 56
6.4.2.1 Structure Subjected to Santa Monica Ground Motion ................. 56
6.4.2.2 Structure Subjected to Altadena Ground Motion ......................... 57
5.4.2.3 Structure Subjected to Corralitos Ground Motion ....................... 58
6.4.3 Improvement of Performance for Structure with Corrugated
Plate Dampers .......................................................................................... 58
6.4.3.1 Structure Subject to Santa Monica Ground Motion ..................... 59
6.4.3.2 Structure Subject to Altadena Ground Motion ............................ 61
5.4.3.3 Structure Subject to Corralitos Ground Motion ........................... 63
vii
Chapter 7: Conclusions ......................................................................................................... 65
7.1 General ................................................................................................................ 65
7.2 Suggestions ......................................................................................................... 66
References ............................................................................................................................ 67
Tables ................................................................................................................................... 69
Figures .................................................................................................................................. 80
參考文獻 1. ASCE7. (2002). Minimum Design Load for Buildings and Other Structures. Washington, D.C., United States.
2. ASTM. (2017). Standard Specification for Alloy Steel Socket-Head Cap Screws (Metric). West Conshohocken, United States.
3. Chopra, A.K. 1980. Dynamic of Structure. New Jersey. Prentice Hall.
4. Connor, J. (2003). Introduction to Structural Motion Control (MIT/Prenti). New York.
5. FEMA. (1998). Handbook for the Seismic Evaluation of Buildings (FEMA-310). USA: The American Society of Civil Engineers.
6. Filiatrault, A., Cherry, S. (1986). Seismic Tests of Friction-Damped Steel Frames, Third Conference on Dynamic Response of Structures, ASCE, Los Angeles, USA.
7. Kaur, N., Matsagar, V. A., & Nagpal, A. K. (2012). Earthquake Response of Mid-rise to High-rise Buildings with Friction Dampers. International Journal of High-Rise Buildings, 1(4), 311–332.
8. Kelly, J.M., Aiken, I.D., Pall, A.S. (1988). Seismic Response of a Nine-Story Steel Frame with Friction-Damped Cross-Bracing, Report No. UCB / EERC-88/17. Earthquake Engineering Research Center, University of California at Berkeley, 1-7.
9. Lago, A., Wood, A. Damping Technologies for Tall Buildings: New Trends in Comfort and Safety., CTBUH/IUAV University of Venice.
10. Mackriell, L. E., Kwok, K. C. S., & Samali, B. (1997). Critical Mode Control of a Wind-loaded Tall Building using an Active Tuned Mass Damper. Engineering Structures, 19(10), 834–842.
11. Pasquin, C., Leboeuf, N, et al. (2004). Friction Dampers for Seismic Rehabilitation of Eaton’s Building, Montreal. 13’th World Conference on Earthquake Engineering, Vancouver, B.C., Canada.
68
12. Samali, B., & Kwok, K. C. S. (1995). Use of viscoelastic dampers in reducing wind- and earthquake-induced motion of building structures. Engineering Structures, 17(9), 639–654.
13. Smith, R. J., & Willford, M. R. (2007). The Damped Outrigger Concept for Tall Buildings. The Structural Design of Tall and Special Buildings, 16(4), 501–517.
14. Tanaka, H., & Mak, C. Y. (1983). Effect of Tuned Mass Dampers on Wind Induced Response of Tall Buildings. Journal of Wind Engineering and Industrial Aerodynamics, 14, 357–368.
15. The Japan Iron and Steel Federation (2015). High Performance Steels. Nihonbashi - Kayabacho, Chuo-Ku, Japan.
16. Vezina, S., Proulx, P., Pall, R., Pall, A. (1992). Friction-Dampers for Aseismic Design of Canadian Space Agency, Tenth World Conference on Earthquake Engineering, Madrid, Spain, 4123-4128.
17. Wakahara, T., Ohyama, T., & Fujii, K. (1992). Suppression of Wind-induced Vibration of a Tall Building using Tuned Liquid Damper. Journal of Wind Engineering and Industrial Aerodynamics, 43(1-3), 1895–1906.
18. Wijaya M.N (2012). Seismic Performance of the Folded Cantilever Shear Structure with Fixed – Movable – Fixed Sub-Frames, Kumamoto, Japan
19. Xu, Y. L. (1996). Parametric study of active mass dampers for wind-excited tall buildings. Engineering Structures, 18(1), 64–76.
20. Yukihiro, T., Kenzo, T. (2008). A case of Structural Design in Which Viscous Damping Are Used to Enhance Earthquake Resisting Performance of a Building. Structural Engineering Dept. Beijing, China.
指導教授 許協隆(Hsieh-Lung HSU) 審核日期 2019-8-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明