博碩士論文 106621002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:8 、訪客IP:18.219.242.213
姓名 林冠揚(Kuan-Yang Lin)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 1979-2017年西北太平洋颱風年代際變化探討
(Interdecadal change of tropical cyclones characteristic over Western North Pacific during 1979-2017)
相關論文
★ 春季中國華南地區層積雲分析★ 近赤道東太平洋特定海域之降水年際變異探討
★ 聖嬰現象對颱風的影響之研究★ 1999年12月至2016年12月期間越南中部地區極端降雨
★ 2016東亞極端寒潮事件研究★ 春季大氣環流對東南亞氣膠傳輸之影響
★ 台灣夏季季風之研究★ 熱帶與副熱帶地區半年週期震盪之探討
★ 台灣冬季降水年際變化之研究★ 颱風季節降雨量之年際變化
★ 颱風季節台灣降雨量年際變化之研究★ 1979年夏季印度季風季內變化之研究
★ 福爾摩沙衛星三號掩星資料對全球夏季氣候研究的影響★ 福衛三號掩星資料在東亞季風研究之應用
★ 台灣乾溼梅特徵分析★ ENSO對東亞降雨之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 西北太平洋颱風活動以長時間尺度來看有著年代際震盪的變化,而最近一次較大的變化發生在1997/98年時,颱風的平均數量在此之後出現顯著的減少,而此低靡時期一路持續到2017年左右。因此便好奇1997/98年前後西北太平洋颱風除了生成數量有顯著改變外,是否其他特性也有著明顯的改變。
首先統計1951-2017年的颱風發生日期,定義了平均颱風旺盛時期,並透過該時期進行1979-2017年颱風路徑及移速上的探討。定義1979-1997為 Phase 1(P1)時期,1998-2017為Phase 2(P2)時期。先將颱風路徑分為轉向型及直西型,而直西型又另外分出西北型及平西型。發現轉向型颱風在P2時期平均路徑有向西調整的趨勢,日本南方及台灣東北方海域的颱風發生頻率也有顯著增加的趨勢。而直西型颱風則是在P2時期平均路徑有北偏的趨勢,另外分類出西北型及平西型更可以看出西北型颱風在後期的發生頻率明顯增加,而平西型颱風則是明顯減少的。在移速方面的研究,發現轉向型颱風在P2時期平均移速較P1時期慢,且隨著緯度升高移速也有持續減慢的趨勢。而直西型颱風則在P2時期出現明顯加速及減速特徵,在東側遠洋海域約134-143°E時移速明顯較P1時期快,而在漸漸西移的過程中出現明顯減速,在120-135°E時移速較P1時期慢,隨後兩時期移速趨於接近。
造成轉向型颱風路徑偏移的主要原因在於中高層中緯度一帶出現明顯的東風異常量,使得路徑向西偏移外移速也隨之減慢。而直西型颱風的部分,是因為在低層低緯洋面有較強勁東風異常,使得颱風初期移速較快,之後在菲律賓東方近海開始出現南風分量,使得路徑北偏外移速也跟著減慢。
最後透過經驗正交函數分析發現,海表面溫度與重力位高度場及流函數場的時間序列間有很高的正相關性,且發生明顯變化的時間點也在1997/98年間,顯示此時期大氣環境的變化一定程度的影響了西北太平洋的颱風活動。
摘要(英) Tropical cyclones (TC) genesis amount has been detected to have both interannual and interdecadal oscillations in the Northwestern Pacific Ocean. The latest and significant change appeared in 1997/98 indicates that TC amount began to decrease dramatically after 1997/98 and persisted to around 2017. Beside the TC genesis amount change, whether the TC characteristic altered is also drawn to our attention.
First, we defined the relatively active TC genesis period of a year based upon TC genesis historical dates over 1951-2017 and then intensively investigated both TC tracks and their speeds during 1979-2017 as 1979-1997 represented for phase I (P1) and 1998-2017 for phase II (P2). Second, two types of TC movement were identified: recurving and straight-moving. Furthermore, the straight-moving TCs could be split into northwestward- and westward-moving categories. Interestingly, it is found that the recurving TC in P2 not only has a tendency of moving farther west than those in P1 but also significantly increase the TC occurrence frequency over south of Japan and northeast of Taiwan area. On the other hand, the straight-moving TCs apparently shift northward in P2 with greater occurrence frequency for northwestward-moving one and less for westward-moving TCs. In regard to the moving speed, it appears that the recurving TCs in P2 are not only slower than those in P1 but continue to decrease when they move further north. On the contrary, the straight-moving TCs happen to be more fluctuated that they move a bit faster over 145°E to 135°E then slower between 135°E and 120°E in P2. However, their speeds are somehow in agreement with each other both in P2 and P1 when they move into South China Sea.
Based upon the composite analysis, it turns out that the anomalous easterlies over the region between 25°N-35°N on upper troposphere not only force the recurving TCs moving farther west but also reduce their moving speeds in P2. While in the low latitude area, the anomalous easterlies induced by the Pacific subtropical High anomaly could enhance the speeds of both the recurving and straight-moving TCs during their developing stage in P2. Meanwhile, the mild anomalous southerlies near east of Philippines might contribute to both track northward shifting and speed decreasing for straight-moving TCs over 135°-120°E region.
Through the empirical orthogonal function analysis on sea surface temperature (SST), geopotential height and stream function for multi levels, it shows that the first principle component time series of SST has a high correlation coefficient with each individual variable ones. Besides, all of them demonstrates a profound phase change between 1997/98. Thus, we could hypothesize that the large scale circulation make the adjustment and leading toward the TC genesis amount abruptly decreasing and characteristic change in response to the long term time variation of SST during 1979-2017.
關鍵字(中) ★ 颱風
★ 年代際變化
★ 太平洋年代際震盪
★ 西北太平洋
關鍵字(英) ★ Tropical cyclone
★ Interdecadal change
★ Pacific Interdecadal Oscillation
★ Northwestern Pacific ocean
論文目次 中文提要 i
英文提要 ii
誌謝 iv
目錄 v
圖表目錄 vi
一、 前言 1
二、 資料來源和分析方法 4
2.1 資料來源 4
2.2 分析方法 5
三、 颱風活動情形 8
3.1 颱風季定義 8
3.2 颱風活動的年代際變化 9
四、颱風移動路徑與速度變化 10
4.1 兩個時期的路徑變化 10
4.2 兩個時期的移速變化 12
五、氣候場分析 14
5.1 兩個時期氣候場分析 14
5.2 轉向及直西型颱風氣候場分析 17
5.3 環流造成的移速及路徑變化 18
5.4 轉向颱風轉向前後的分析 20
5.5 轉向前後一天氣候場分析 21
5.6 轉向與直行颱風氣候場差異分析 23
六、 長期氣候的變化 24
6.1 SST變化分析 24
6.2 重力位高度及流函數場的分 25
6.3 颱風活動與氣候場間的分析 26
七、 結論與展望 28
7.1 結論 28
7.2 未來展望 31
八、參考文獻 32
參考文獻 周淑貞、張如一、張超著(1997)。氣象學與氣候學。台北市:明文。
傅彥達(2014)。西北太平洋地區熱帶氣旋之移速及路徑分布特性。國立中央大學大氣物理所碩士論文。
劉冠倫(2017)。聖嬰現象對颱風的影響之研究。國立中央大學大氣物理所碩士論文。
III, L. E. C., and R. L. Elsberry, 1990: Observational Evidence for Predictions of Tropical Cyclone Propagation Relative to Environmental Steering. Journal of the Atmospheric Sciences, 47, 542-546.
Chan, J. C. L., 2000: Tropical Cyclone Activity over the Western North Pacific Associated with El Niño and La Niña Events. Journal of Climate, 13, 2960-2972.
Chan, J. C. L., and K. S. Liu, 2004: Global Warming and Western North Pacific Typhoon Activity from an Observational Perspective. Journal of Climate, 17, 4590-4602.
Chan, J. C., 2005: Interannual and interdecadal variations of tropical cyclone activity over the western North Pacific. Meteorology and Atmospheric Physics, 89, 143-152.
Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2006: Interannual Variation of the Tropical Cyclone Activity over the Western North Pacific. Journal of Climate, 19, 5709-5720.
Choi, Y., K.-J. Ha, C.-H. Ho, and C. E. Chung, 2015: Interdecadal change in typhoon genesis condition over the western North Pacific. Climate dynamics, 45, 3243-3255.
Ha, K.-J., S.-J. Yoon, K.-S. Yun, J.-S. Kug, Y.-S. Jang, and J. C. L. Chan, 2012: Dependency of typhoon intensity and genesis locations on El Niño phase and SST shift over the western North Pacific. Theoretical and Applied Climatology, 109, 383-395.
He, H., J. Yang, D. Gong, R. Mao, Y. Wang, and M. Gao, 2015: Decadal changes in tropical cyclone activity over the western North Pacific in the late 1990s. Climate dynamics, 45, 3317-3329.
Hong, C.-C., Y.-K. Wu, T. Li, and C.-C. Chang, 2014: The climate regime shift over the Pacific during 1996/1997. Climate Dynamics, 43, 435-446.
Hong, C.-C., Y.-K. Wu, and T. Li, 2016: Influence of climate regime shift on the interdecadal change in tropical cyclone activity over the Pacific Basin during the middle to late 1990s. Climate dynamics, 47, 2587-2600.
Hsu, P.-C., P.-S. Chu, H. Murakami, and X. Zhao, 2014: An Abrupt Decrease in the Late-Season Typhoon Activity over the Western North Pacific. Journal of Climate, 27, 4296-4312.
Huang, B., and Coauthors, 2017: Extended Reconstructed Sea Surface Temperature, Version 5 (ERSSTv5): Upgrades, Validations, and Intercomparisons. Journal of Climate, 30, 8179-8205.
Liu, K. S., and J. C. L. Chan, 2008: Interdecadal Variability of Western North Pacific Tropical Cyclone Tracks. Journal of Climate, 21, 4464-4476.
Liu, K. S., and J. C. L. Chan, 2013: Inactive Period of Western North Pacific Tropical Cyclone Activity in 1998–2011. Journal of Climate, 26, 2614-2630.
Mantua, N. J., S. R. Hare, Y. Zhang, J. M. Wallace, and R. C. Francis, 1997: A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production*. Bulletin of the American Meteorological Society, 78, 1069-1080.
Matsuura, T., M. Yumoto, and S. Iizuka, 2003: A mechanism of interdecadal variability of tropical cyclone activity over the western North Pacific. Climate Dynamics, 21, 105-117.
Sobel, A. H., and S. J. Camargo, 2005: Influence of Western North Pacific Tropical Cyclones on Their Large-Scale Environment. Journal of the Atmospheric Sciences, 62, 3396-3407.
Camargo, S. J., and A. H. Sobel, 2005: Western North Pacific Tropical Cyclone Intensity and ENSO. Journal of Climate, 18, 2996-3006.
Tao, L., L. Wu, Y. Wang, and J. Yang, 2012: Influence of Tropical Indian Ocean Warming and ENSO on Tropical Cyclone Activity over the Western North Pacific. 気象集誌. 第2輯, 90, 127-144.
Tu, J.-Y., C. Chou, and P.-S. Chu, 2009: The Abrupt Shift of Typhoon Activity in the Vicinity of Taiwan and Its Association with Western North Pacific–East Asian Climate Change. Journal of Climate, 22, 3617-3628.
Tu, J.-Y., C. Chou, P. Huang, and R. Huang, 2011: An abrupt increase of intense typhoons over the western North Pacific in early summer. Environmental Research Letters, 6, 034013.
Wang, B., and J. C. L. Chan, 2002: How Strong ENSO Events Affect Tropical Storm Activity over the Western North Pacific. Journal of Climate, 15, 1643-1658.
Wu, L., Z. Wen, R. Huang, and R. Wu, 2012: Possible Linkage between the Monsoon Trough Variability and the Tropical Cyclone Activity over the Western North Pacific. Monthly Weather Review, 140, 140-150.
Xu, S., and B. Wang, 2014: Enhanced western North Pacific tropical cyclone activity in May in recent years. Climate dynamics, 42, 2555-2563.
Zhan, R., Y. Wang, and M. Wen, 2013: The SST gradient between the southwestern Pacific and the western Pacific warm pool: A new factor controlling the northwestern Pacific tropical cyclone genesis frequency. Journal of Climate, 26, 2408-2415.
Zhou, T., and Coauthors, 2009: Why the Western Pacific Subtropical High Has Extended Westward since the Late 1970s. Journal of Climate, 22, 2199-2215.
指導教授 嚴明鉦(Ming-Cheng Yen) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明