參考文獻 |
簡芳菁、洪玉秀,2010:梅雨季西南氣流氣候平均與個案之數值研究。大氣科
學, 38,237-267。
陳勁宏,2018:不同微物理方案在雲可解析模式的系集預報分析:SoWMEX-
IOP8個案。中央大學大氣物理研究所碩士論文。
盧可昕,2018:利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流
實驗期間強降雨事件的雲物理過程。中央大學大氣物理研究所碩士碩士論文。
陳立昕,2017:利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8
個案分析。中央大學大氣物理研究所碩士碩士論文。
曾昭誠,2017:利用2016年TASSE實驗期間X-band雷達資料反演及分析雨
滴粒徑分布特性。中央大學大氣物理研究所碩士碩士論文。
繆炯恩,2017 : 2015 年 6 月 14 日臺北盆地劇烈午後雷暴個案之高解析度模
擬研究。台灣大學大氣科學研究所碩士論文。
Chung, K.-S., W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of Situation-
Dependent Background Error Covariances at the Convective Scale in the Context of the Ensemble Kalman Filter. Mon. Wea. Rev., 141, 3369-3387.
Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook,
2004: Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments. Mon. Wea. Rev., 132, 1982-2005.
Ebert, Elizabeth E., 2001: Ability of a poor man’s ensemble to
predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480
Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A Double-Moment
Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations. Journal of the Atmospheric Sciences, 52, 1001-1033.
Fresnay, S., Hally, A., Garnaud, C., Richard, E., and Lambert, D.:
Heavy precipitation events in the Mediterranean: sensitivity to cloud physics parameterisation uncertainties, Nat. Hazards Earth Syst. Sci., 12, 2671-2688, https://doi.org/10.5194/nhess-12-2671-2012, 2012.
Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004:
Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme. Mon. Wea. Rev., 132, 2610-2627.
Ha, S., J. Berner, and C. Snyder, 2015: A Comparison of Model Error
Representations in Mesoscale Ensemble Data Assimilation. Mon. Wea. Rev., 143, 3893-3911.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L.
Mitchell, 1996: A System Simulation Approach to Ensemble Prediction. Mon. Wea. Rev., 124, 1225-1242.
McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991:
Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection. Journal of Applied Meteorology, 30, 985-1004.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of Cloud
Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Wea. Rev., 137, 991-1007.
Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler
Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 131, 163-1677.
Tapiador, F. J., and Coauthors, 2011: A Comparison of Perturbed
Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in Spain. Journal of Applied Meteorology and Climatology, 51, 489-504.
Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of
Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Mon. Wea. Rev., 133, 1789-1807.
Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective
storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data. Quarterly Journal of the Royal Meteorological Society, 136, 685-700.
Yussouf, N., and D. J. Stensrud, 2011: Comparison of Single-Parameter
and Multiparameter Ensembles for Assimilation of Radar Observations Using the Ensemble Kalman Filter. Mon. Wea. Rev., 140, 562-586.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics
scheme (WSM6). Vol. 42, 129-151 pp.
Jr, R., R. M. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled
liquid water in winter storms using the MM5 mesoscale model. Vol. 124, 1071-1107 pp.
Lee, M.-T., Lin, P.-L., and Chang, W.-Y., 2019: Microphysical Characteristics
and Types of Precipitation for Different Seasons over North Taiwan.J. Meteor. Soc. Japan
Lim, K.-S. S., and S.-Y. Hong, 2009: Development of an Effective Double-Moment
Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Wea. Rev., 138, 1587-1612.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow
Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
Martin, G. M., D. W. Johnson, and A. Spice, 1994: The Measurement and
Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds. Journal of the Atmospheric Sciences, 51, 1823-1842.
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A New Double-Moment
Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62, 165-1677.
Rutledge, S. A., and P. Hobbs, 1983: The Mesoscale and Microscale Structure and
Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands. Journal of the Atmospheric Sciences, 40, 1185-1206.
Tao, W.-K., J. Simpson, and M. McCumber, 1989: An Ice-Water Saturation
Adjustment. Mon. Wea. Rev., 117, 231-235.
Tao, W.-K., and Coauthors, 2011: The impact of microphysical schemes on hurricane
intensity and track. Asia-Pacific Journal of Atmospheric Sciences, 47, 1-16.
Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen,
2014: Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.
|