博碩士論文 106621003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.16.49.213
姓名 梁晏彰(Yen-Chang Liang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 分析不同微物理參數化之系集預報誤差: SoWMEX-IOP8 對流個案
(Analysis of Ensemble Forecast Error in Different Microphysics Schemes:Thunderstorm during SoWMEX-IOP8)
相關論文
★ McGill Algorithm for Precipitation nowcasting using Lagrangian Extrapolation(MAPLE)即時預報系統在臺灣複雜地形之可行性評估:颱風與梅雨鋒面個案分析★ 利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8 個案分析
★ 不同微物理方案在雲可解析模式的系集預報分析: SoWMEX-IOP8 個案★ 藉由數值模式水平風場改善雷達回波外延即時預報系統:16個颱風個案統計分析
★ 利用雙偏極化雷達觀測資料進行極短期天氣預報評估─2008年西南氣流實驗IOP8期間颮線系統個案★ 台灣地區對流胞特性統計分析與即時路徑預報之改善
★ 評估TAHOPE觀測實驗同化S-PolKa徑向風、回波與折射指數對短期降雨預報的影響:觀測系統模擬實驗(OSSE)之測試★ 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例
★ 使用局地系集轉換卡爾曼濾波器同化雙偏極化參數的全新方法:夏季真實個案中的分析場與預報場★ 台灣地區強對流胞即時預報與冰雹預警能力之分析與改善
★ Extreme Heavy Rainfall Event on 01-02 June 2017 over Northern Taiwan Area: Analysis of Radar Observation and Ensemble Simulations★ WRF-LETKF系統同化反演熱動力場與雷達資料:鋒面雨帶個案之分析探討
★ Investigating hygroscopic cloud-seeding effects in liquid-water clouds in northern Taiwan: in-situ measurements and model simulation★ 同化雙偏極化雷達差異反射率之方法與影響評估:2021 年宜蘭降雨觀測實驗 IOP2 個案分析
★ 利用三維回波移動場改善即時降雨預報並建構系集即時預報系統:臺灣梅雨鋒面及秋季降水個案分析★ 1950至2020全球海溫分布模式及其氣候影響:東部型與中部型ENSO的比較分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 研究中共使用四種微物理參數化方案,兩種單矩量參數化方案:Goddard(GCE)、WRF SM 6-category(WSM6)及兩種雙矩量方案:WRF DM 6-category(WDM6)、Morrison(MOR),四種方案分別進行系集預報,藉此了解不同微物理參數化方案搭配系集預報的特性。研究中利用2008年6月16日台灣北部熱對流個案,探討對流成熟期時,強對流區的模式離散程度和背景誤差協方差,了解透過系集資料同化系統,觀測如何影響相關模式變數。
結果顯示,GCE有最強的冰相混合比,因此回波發展最高;在低層暖雨過程,雖然WDM6有最大雨混合比但回波卻是最弱的,而MOR混合比雖沒有特別大,然而回波卻是最強的,原因為WDM6預報出現大量的粒子數量,而MOR的粒子數量則是最少的,因此導致上述的結果。此結果顯示使用雙矩量微物理方案時,不可忽視粒子數量所帶來的影響,而雨滴粒子數量不只影響回波,降雨、蒸發效率、溫度甚至冷池都可能因為不同雨滴大小、數量而有不同表現。
根據不同微物理參數化設定,在方差分布也有不一樣的特徵,GCE在高層有較多的不確定性,WDM6在低層有最大的離散程度,而MOR在融化層附近有最大的方差。研究中發現GCE在冰相有較多不確定性,WDM6則在暖雨過程離散程度較大,因此在進行系集資料同化時,使用這兩種微物理參數化法,可在有限的系集個數下,有效地增加系集間的離散度。
研究中亦討論不同變數間的誤差相關性,在對流區,垂直風與潛熱釋放有高度相關性,可能原因為強風速提高粒子間相態轉換,隨之釋放的潛熱又提高風速;此外在MOR的回波自相關中也可以看到粒子數量所帶來的影響。
摘要(英) To understand the characteristics of different microphysics schemes and investigate the forecast error structure in very short-term forecast, four microphysics schemes are used in the study. They include two single-moment schemes: Goddard(GCE)、WRF SM 6-category(WSM6), and two double-moment schemes of WRF DM 6-category(WDM6) and Morrison(MOR). A thunderstorm case in northern Taiwan on June 16, 2008 is selected.
The results show that GCE has the most ice-related mixing ratio, so the reflectivity development is the highest. In the low-level warm rain process, WDM6(MOR) has the most(fewest) rain mixing ratio and the weakest(strongest) reflectivity due to large(small) number of rain total number concentration. It is found that when using the double-moment microphysics scheme, the influence of the total number concentration cannot be ignored.
According to different microphysics scheme settings, the variance also has different characteristics. With the same ensemble members (36), it is found that GCE(WDM6) has more uncertainty in ice-related processes (warm rain processes). Therefore, using combination of these two schemes can effectively increase ensemble spread and improve the benefits of data assimilation.
The error correlation between different variables is also discussed in the study. In the convective zone, the vertical wind and the latent heat release are highly correlated. The possible reason is that the strong vertical wind increases the phase transition between the particles, and the latent heat released enhances the vertical wind again. In addition, the reflectivity auto-correlation in MOR is greatly affected by the number of particles around melting layer.
關鍵字(中) ★ 系集預報
★ 微物理參數化
★ 誤差相關性
★ 方差
關鍵字(英) ★ Ensemble Forecast
★ Microphysics Scheme
★ error correlation
★ variance
論文目次 內容
摘要 v
Abstract vi
第一章 : 緒論 1
1.1 文獻回顧 1
1.2 研究動機 3
第二章 : 個案簡介 5
第三章 : 實驗設計 6
3.1 模式初始場 6
3.2 模式設定 6
3.3 微物理參數化簡介 7
3.3.1 GCE 8
3.3.2 WSM6 8
3.3.3 WDM6 9
3.3.4 MOR 9
3.4 研究方法 10
3.4.1方差 10
3.4.2誤差相關係數 11
第四章 : 結果討論 12
4.1 利用決定性預報討論不同參數化異同 12
4.1.1系統發展與降雨 12
4.1.2各變數垂直結構隨時間變化 12
4.1.3雨滴粒子數量 14
4.2 系集預報表現 15
4.2.1 系集平均狀態及比較 15
4.2.2 回波、混合比、雨滴粒徑至降雨之關係 16
4.2.3 溫度比較 19
4.3 方差結果 20
4.3.1 微物理變數方差 20
4.3.2 動力變數及熱力變數方差 22
4.3.3 水平溫度方差 22
4.3.4 水平風方差 23
4.4 誤差相關性 23
4.4.1 回波之誤差相關性 24
4.4.2 垂直風之誤差相關性 25
4.5 解析度比較 25
4.6 方差及誤差相關性對資料同化效益討論 26
第五章 : 結論 28
5-1總結 28
5-2 未來展望 30
參考文獻 31
附錄 35
PM (Probability Matched mean) 35
參考文獻 簡芳菁、洪玉秀,2010:梅雨季西南氣流氣候平均與個案之數值研究。大氣科
學, 38,237-267。
陳勁宏,2018:不同微物理方案在雲可解析模式的系集預報分析:SoWMEX-
IOP8個案。中央大學大氣物理研究所碩士論文。
盧可昕,2018:利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流
實驗期間強降雨事件的雲物理過程。中央大學大氣物理研究所碩士碩士論文。
陳立昕,2017:利用系集法估計與檢驗對流尺度之預報誤差:SoWMEX IOP8
個案分析。中央大學大氣物理研究所碩士碩士論文。
曾昭誠,2017:利用2016年TASSE實驗期間X-band雷達資料反演及分析雨
滴粒徑分布特性。中央大學大氣物理研究所碩士碩士論文。
繆炯恩,2017 : 2015 年 6 月 14 日臺北盆地劇烈午後雷暴個案之高解析度模
擬研究。台灣大學大氣科學研究所碩士論文。
Chung, K.-S., W. Chang, L. Fillion, and M. Tanguay, 2013: Examination of Situation-
Dependent Background Error Covariances at the Convective Scale in the Context of the Ensemble Kalman Filter. Mon. Wea. Rev., 141, 3369-3387.
Dowell, D. C., F. Zhang, L. J. Wicker, C. Snyder, and N. A. Crook,
2004: Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments. Mon. Wea. Rev., 132, 1982-2005.
Ebert, Elizabeth E., 2001: Ability of a poor man’s ensemble to
predict the probability and distribution of precipitation. Mon. Wea. Rev., 129, 2461-2480
Ferrier, B. S., W.-K. Tao, and J. Simpson, 1995: A Double-Moment
Multiple-Phase Four-Class Bulk Ice Scheme. Part II: Simulations of Convective Storms in Different Large-Scale Environments and Comparisons with other Bulk Parameterizations. Journal of the Atmospheric Sciences, 52, 1001-1033.
Fresnay, S., Hally, A., Garnaud, C., Richard, E., and Lambert, D.:
Heavy precipitation events in the Mediterranean: sensitivity to cloud physics parameterisation uncertainties, Nat. Hazards Earth Syst. Sci., 12, 2671-2688, https://doi.org/10.5194/nhess-12-2671-2012, 2012.
Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004:
Precipitation Uncertainty Due to Variations in Precipitation Particle Parameters within a Simple Microphysics Scheme. Mon. Wea. Rev., 132, 2610-2627.
Ha, S., J. Berner, and C. Snyder, 2015: A Comparison of Model Error
Representations in Mesoscale Ensemble Data Assimilation. Mon. Wea. Rev., 143, 3893-3911.
Houtekamer, P. L., L. Lefaivre, J. Derome, H. Ritchie, and H. L.
Mitchell, 1996: A System Simulation Approach to Ensemble Prediction. Mon. Wea. Rev., 124, 1225-1242.
McCumber, M., W.-K. Tao, J. Simpson, R. Penc, and S.-T. Soong, 1991:
Comparison of Ice-Phase Microphysical Parameterization Schemes Using Numerical Simulations of Tropical Convection. Journal of Applied Meteorology, 30, 985-1004.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of Cloud
Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One- and Two-Moment Schemes. Mon. Wea. Rev., 137, 991-1007.
Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler
Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 131, 163-1677.
Tapiador, F. J., and Coauthors, 2011: A Comparison of Perturbed
Initial Conditions and Multiphysics Ensembles in a Severe Weather Episode in Spain. Journal of Applied Meteorology and Climatology, 51, 489-504.
Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of
Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Mon. Wea. Rev., 133, 1789-1807.
Xue, M., Y. Jung, and G. Zhang, 2010: State estimation of convective
storms with a two-moment microphysics scheme and an ensemble Kalman filter: Experiments with simulated radar data. Quarterly Journal of the Royal Meteorological Society, 136, 685-700.
Yussouf, N., and D. J. Stensrud, 2011: Comparison of Single-Parameter
and Multiparameter Ensembles for Assimilation of Radar Observations Using the Ensemble Kalman Filter. Mon. Wea. Rev., 140, 562-586.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics
scheme (WSM6). Vol. 42, 129-151 pp.
Jr, R., R. M. Rasmussen, and R. Bruintjes, 1998: Explicit forecasting of supercooled
liquid water in winter storms using the MM5 mesoscale model. Vol. 124, 1071-1107 pp.
Lee, M.-T., Lin, P.-L., and Chang, W.-Y., 2019: Microphysical Characteristics
and Types of Precipitation for Different Seasons over North Taiwan.J. Meteor. Soc. Japan
Lim, K.-S. S., and S.-Y. Hong, 2009: Development of an Effective Double-Moment
Cloud Microphysics Scheme with Prognostic Cloud Condensation Nuclei (CCN) for Weather and Climate Models. Mon. Wea. Rev., 138, 1587-1612.
Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk Parameterization of the Snow
Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
Martin, G. M., D. W. Johnson, and A. Spice, 1994: The Measurement and
Parameterization of Effective Radius of Droplets in Warm Stratocumulus Clouds. Journal of the Atmospheric Sciences, 51, 1823-1842.
Morrison, H., J. A. Curry, and V. I. Khvorostyanov, 2005: A New Double-Moment
Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62, 165-1677.
Rutledge, S. A., and P. Hobbs, 1983: The Mesoscale and Microscale Structure and
Organization of Clouds and Precipitation in Midlatitude Cyclones. VIII: A Model for the “Seeder-Feeder” Process in Warm-Frontal Rainbands. Journal of the Atmospheric Sciences, 40, 1185-1206.
Tao, W.-K., J. Simpson, and M. McCumber, 1989: An Ice-Water Saturation
Adjustment. Mon. Wea. Rev., 117, 231-235.
Tao, W.-K., and Coauthors, 2011: The impact of microphysical schemes on hurricane
intensity and track. Asia-Pacific Journal of Atmospheric Sciences, 47, 1-16.
Yang, S.-C., S.-H. Chen, S.-Y. Chen, C.-Y. Huang, and C.-S. Chen,
2014: Evaluating the Impact of the COSMIC RO Bending Angle Data on Predicting the Heavy Precipitation Episode on 16 June 2008 during SoWMEX-IOP8. Mon. Wea. Rev., 142, 4139-4163.
指導教授 鍾高陞(Kao-Shen Chung) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明