參考文獻 |
邵彥銘,2015:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善短期定量 降雨預報:SoWMEX IOP8 個案分析,國立中央大學大氣物理所碩士論文, 1-78頁。
陳薇鈞,2011:2008年西南氣流實驗IOP8雷達折射指數場特性之研究。國立中央大學大氣物理所碩士論文,1-73頁。
楊靜伃,2012:使用四維變分都卜勒雷達變分分析系統(VDRAS)與WRF改善短期定量降水預報。國立中央大學大氣物理所碩士論文,1-83頁。
蔡直謙,2014:利用局地系集轉換卡爾曼濾波器雷達資料同化系統改善定量降 水即時預報:莫拉克颱風(2009)。國立中央大學大氣物理所博士論文,1-71 頁。
鄧詠霖,2015:利用雷達觀測與反演變數改善模式定量降水預報之能力-2008 年西南氣流實驗IOP#8個案分析。國立中央大學大氣物理所碩士論文,1-95頁。
鄭翔文,2017:雷達資料同化於多重尺度天氣系統(梅雨)的強降雨預報影響: SoWMEX IOP#8個案研究國立中央大學大氣物理所碩士論文,1-68頁。
盧可昕,2018:利用雙偏極化雷達及雨滴譜儀觀測資料分析2008年西南氣流實驗期間強降雨事件的雲物理過程。國立中央大學大氣物理所碩士論文,1-91頁。
Augros, C, Caumont, O, Ducrocq, V, Gaussiat, N. Assimilation of radar dual polarization observations in the AROME model. Q J R Meteorol Soc. 2018; 144: 1352– 1368.
Dawson, D.T., M. Xue, J.A. Milbrandt, and M.K. Yau, 2010: Comparison of Evaporation and Cold Pool Development between Single-Moment and Multi-moment Bulk Microphysics Schemes in Idealized Simulations of Tornadic Thunderstorms. Mon. Wea. Rev., 138, 1152–1171
——, E.R. Mansell, Y. Jung, L.J. Wicker, M.R. Kumjian, and M. Xue, 2014: Low Level ZDR Signatures in Supercell Forward Flanks: The Role of Size Sorting and Melting of Hail. J. Atmos. Sci., 71, 276–299,
Dowell, D. C., F. Zhang, L. J. Wicher, C. Snyder, and N. A. Crook, 2004: Wind and temperature retrievals in the 17 May 1981 Arcadia, Oklahoma, supercell: Ensemble Kalman filter experiments. Mon. Wea. Rev., 132, 1982-2005.
Hong, Song–You, Jimy Dudhia, and Shu–Hua Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120.
Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Physica D, 230, 112-126.
Johnson, M., Y. Jung, D. Dawson, and M. Xue, 2016: Comparison of simulated polarimetric signatures in idealized supercell storms using two-moment bulk microphysics schemes in WRF. Mon. Wea. Rev., 144, 971–996,
Jung, Y., G. Zhang, and M. Xue, 2008: Assimilation of simulated polarimetric radar data for a convective storm using ensemble Kalman filter. Part I: Observation operators for reflectivity and polarimetric variables. Mon. Wea. Rev., 136, 2228–2245.
Jung, Y., M. Xue, G. Zhang, and J.M. Straka, 2008: Assimilation of Simulated Polarimetric Radar Data for a Convective Storm Using the Ensemble Kalman Filter. Part II: Impact of Polarimetric Data on Storm Analysis. Mon. Wea. Rev., 136, 2246–2260,
——, ——, and G. Zhang, 2010: Simulations of polarimetric radar signatures of a supercell storm using a two-moment bulk microphysics scheme. J. Appl. Meteor. Climatol., 49, 146–163.
——, ——, and M. Tong, 2012: Ensemble Kalman filter analyses of the 29–30 May 2004 Oklahoma tornadic thunderstorm using one- and two-moment bulk microphysics schemes, with verification against polarimetric radar data. Mon. Wea. Rev., 140, 1457–1475.
Kumjian, M.R. and A.V. Ryzhkov, 2008: Polarimetric Signatures in Supercell Thunderstorms. J. Appl. Meteor. Climatol., 47, 1940–1961,
——, C.P. Martinkus, O.P. Prat, S. Collis, M. van Lier-Walqui, and H.C. Morrison, 2019: A Moment-Based Polarimetric Radar Forward Operator for Rain Microphysics. J. Appl. Meteor. Climatol., 58, 113–130,
Lim, K.–S. S., and S.–Y. Hong, 2010: Development of an effective double–moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612.
Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 3051–3064.
Min, K., S. Choo, D. Lee, and G. Lee, 2015: Evaluation of WRF Cloud Microphysics Schemes Using Radar Observations. Wea. Forecasting, 30, 1571–1589,
Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Wea. Rev., 137, 991–1007
──, and Jason A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287-311.
Pfeifer, M., G. C. Craig, M. Hagen, and C. Keil, 2008: A polarimetric radar forward operator for model evaluation. J. Appl. Meteor. Climatol., 47, 3202–3220
Putnam, B.J., M. Xue, Y. Jung, N. Snook, and G. Zhang, 2014: The Analysis and Prediction of Microphysical States and Polarimetric Radar Variables in a Mesoscale Convective System Using Double-Moment Microphysics, Multinetwork Radar Data, and the Ensemble Kalman Filter. Mon. Wea. Rev., 142, 141–162
——, ——, ——, G. Zhang, and F. Kong, 2017: Simulation of Polarimetric Radar Variables from 2013 CAPS Spring Experiment Storm-Scale Ensemble Forecasts and Evaluation of Microphysics Schemes. Mon. Wea. Rev., 145, 49–73
——, ——, ——, N. Snook, and G. Zhang, 2019: Ensemble Kalman Filter Assimilation of Polarimetric Radar Observations for the 20 May 2013 Oklahoma Tornadic Supercell Case. Mon. Wea. Rev., 147, 2511–2533,
Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. P. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873– 894,
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G Duda, X.- Y. Huang, W. Wang, and J. G. Powers, 2008: A Description of the Advanced Research WRF Version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp.
Snyder, C. and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with and ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.
Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observation using a cloud model and its adjoint. Part I:Model development and simulated data experiments. J. Atmos. Sci., 54, 1642-1661.
Tsai, C. C. ,Y. Jung, 2017:Sensitivities of Very Short-Term Numerical Prediction to Polarimetric Radar Data Assimilation: Typhoon Soudelor (2015) 38th Conference on Radar Meteorology.
——, S.-C. Yang, and Y.-C. Liou 2014: Improving quantitative precipitation nowcasting with a local ensemble transform Kalman filter radar data assimilation system: Observing system simulation experiments. Tellus A, 66, 21804,
Tu, C. C., Y. L. Chen, C. S. Chen, P. L. Lin and P. H. Lin, 2014: A comparison of two heavy rainfall events during the Terrain-Influenced Monsoon Rainfall Experiment(TiMREX) 2008. Mon. Wea. Rev., 142, 2436-2463.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An Orography-associated extreme rainfall event during TiMREX: Initiation, Storm Evolution, and Maintenance, Mon. Wea. Rev., 140, 2555-2574.
|