博碩士論文 106621014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:5 、訪客IP:18.119.109.119
姓名 張承泰(Cheng-Tai Chang)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 以 WRF 動力降尺度資料探討台北地區未來午後熱對流變化
(A dynamical downscaling Study on thunderstorms Climate Change Over Taipei Basin)
相關論文
★ 宜蘭地區秋冬季降雨特性之研究★ 台灣地區午後對流降水特性之分析
★ 台灣梅雨季中尺度對流系統之數值模擬研究-TAMEX IOP 8 個案★ 利用整合探空系統分析南海北部大氣邊界層特性之研究
★ 中尺度波譜模式對梅雨期豪雨個案模擬之研究★ 宜蘭地區秋冬季豪大雨特性之研究
★ 台灣東南部地區局部環流與邊界層特性之研究★ 台灣東南部地區複雜地形局部環流的模擬研究
★ 宜蘭地區豪雨個案之研究★ 台灣北部地區雨滴粒徑分佈特性與降雨估計之探討
★ 冬季雹暴個案之分析與模擬★ 伴隨敏督利颱風的強烈西南氣流引發豪大雨之個案探討
★ 利用整合探空系統分析台灣東南部地區大氣邊界層特性之研究★ 桃芝颱風(2001)數值模擬研究:颱風路徑與結構之模擬與分析
★ 利用雨滴譜儀分析不同降水系統之微物理特性研究★ 台灣北部地區不同季節以及不同降水型態的雨滴粒徑分布特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在過去數十年以來,台灣極端降水變得更為頻繁且更加劇烈,午後熱對流為造成極端降水的原因之一,亦是台灣重要的夏季降水來源。在氣候變遷下,根據前人研究指出,未來強降雨會更強,使得相關研究顯得更為重要,因此了解未來午後熱對流的變化成為一個值得探討的議題。
本篇使用WRF模式進行動力降尺度以研究未來午後熱對流之變化,透過動力降尺度能得到高解析度的氣候推估資料,並且適合用於模擬劇烈天氣狀況。將年份區分為2011年至2015年、2046年至2050年、2071年至2075年以及2096年至2100年四段討論。資料來源分別使用NCEP分析場和CMIP5中的GFDL在RCP 8.5情境下的模擬結果做為WRF的初始場。
首先利用2011年至2015年資料進行驗證,結果顯示GFDL透過WRF進行動力降尺度有能力模擬午後熱對流之特徵。接著模擬未來情境,台北地區顯示平均每次午後熱對流的降水量在未來會隨年份明顯增加,台北部份地區從原本降雨量為20至30mm增加到30至40mm。造成降水強度增強的原因主要包含:(1)大環境的西南風增強,(2)淡水河口輸送進入之海風增強,(3)台北地區日間輻合量增加,(4)850hPa混和比增加以及(5)垂直方向地面至500hPa相當位溫增加,且上述變化隨時間愈接近21世紀末增加愈為劇烈且明顯。另外,若將降雨強度前10%的個案取出並與所有午後熱對流平均狀況討論,可以發現上述氣象因子的變化會更為明顯。將降雨由小至大排列,發現小雨的降雨量無明顯變化,但中位數約增加25%,最強之個案降雨量增加約2倍,因此可以推測未來極端降雨會愈趨劇烈。
本研究利用WRF進行動力降尺度發現未來午後熱對流會增強,不論是動力、熱力或水氣條件都扮演重要角色。研究結果顯示得知未來午後熱對流的情況與現在之異同,並了解未來極端降雨狀況的變化,以及其變化之原因。
摘要(英) In the past few decades, extremely severe rainfall events have become more frequent and intense. Most of them are due to the afternoon thunderstorms in summer. Afternoon thunderstorm causes floods and landslides, which not only hurts the sociality of humans, but also the biosphere. Hence, the most important topic is to understand the detail of rainfall changes in the future.
In this study, WRF model will be used to simulate the long-term projection of precipitation. First, we divide the 21st Century into four parts, which are 2011-2015, 2046-2050, 2071-2075 and 2096-2100. By using CMIP5 under RCP8.5 scenario, a standard of changes of the weather conditions, we utilize GFDL model’s results as WRF input. The results show that the intensity of the afternoon thunderstorm in Taipei will increase. There are five main reasons that cause changes in afternoon thunderstorm: (1) Stronger southwesterly, (2) stronger sea breeze from Tamsui River, (3) stronger convergence in the daytime in Taipei basin, (4) higher mixing ratio at 850hPa, (5) higher equivalent potential temperature from surface to 500hPa. The difference between the present and the future will become larger as time approaches the end of the 21st century.
Furthermore, the strongest 10% afternoon thunderstorm cases have been selected. After rearranging all the cases sorted by rainfall amount, we find out that the median will increase by 25% and the rainfall of the most extreme case will double. The extreme afternoon thunderstorm rainfall will become more intense in the future.
To sum up, this study mainly focuses on the difference between thunderstorm days in the future and in the present. The change in dynamic conditions, thermal conditions, and water vapor can lead to the intensity change of the afternoon thunderstorms over Taipei basin in the future.
關鍵字(中) ★ 午後熱對流
★ 動力降尺度
關鍵字(英) ★ Afternoon thunderstorms
★ Dynamical downscaling
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
表目錄 VI
圖目錄 VII
一、 緒論 1
1.1 前言 1
1.2 文獻回顧 1
1.3 研究動機 4
二、 資料來源與研究方法 6
2.1 資料來源 6
2.1.1 觀測資料 6
2.1.2 分析場 6
2.1.3 氣候模式結果資料 7
2.2 研究方法 8
2.2.1 模式介紹 8
2.2.2 模式設定 9
2.3 午後熱對流日(TS day)定義 10
三、 模式模擬結果分析 13
3.1 模式模擬結果驗證 13
3.2 廿一世紀末模式推估結果分析 15
3.2.1 廿一世紀末午後熱對流變化概述 15
3.2.2 綜觀環境場差異 15
3.2.3 輻合輻散場差異 16
3.2.4 低層水氣場差異 17
3.2.5 垂直結構差異 18
3.2.6 台北地區近地面差異 19
3.3 廿一世紀間模式推估結果分析 20
四、 台北地區極端事件推估統計分析 24
4.1 極端事件統計結果簡介 24
4.2 廿一世紀末極端事件統計結果分析 25
五、 結論與未來展望 28
5.1 結論 28
5.2 未來展望 30
六、 參考文獻 31
參考文獻 陳泰然、周鴻祺、廖珮娟、楊進賢,2009: 暖季弱綜觀強迫下中北台灣午後對流的氣候特徵。大氣科學,37,155–194
周佳、陳維婷、羅敏輝、李明安、許晃雄、洪志誠、鄒治華、盧孟明、洪致文、陳正達、鄭兆尊,2017: 台灣氣候變遷科學報告2017第一冊–物理現象與機制,554頁。
楊姈桂,2000: 台灣地區午後對流降水特性之分析。國立中央大學大氣物理研究所碩士論文,120頁。
Allen, R. J., and S. C. Sherwood, 2008: Warming maximum in the tropical upper
troposphere deduced from thermal winds. Nature Geosci., 1, 399–403.
Chen, C.-S., and Y.-L. Chen, 2003: The rainfall characteristics of Taiwan. Mon. Wea. Rev., 131, 1323–1341.
Chen, C.-S., C.-L. Liu, M.-C. Yen, C.-Y. Chen, P.-L. Lin, C.-Y. Huang, and J.-H. Teng, 2010: Terrain effects on an afternoon heavy rainfall event, observed over northern Taiwan on 20 June 2000 during monsoon break. J. Meteor. Soc. Japan, 88, 649– 671
Chen, T.-C., S.-Y. Wang, and M.-C. Yen, 2007: Enhancement of afternoon thunderstorm activity by urbanization in a valley: Taipei. J. Appl. Meteor. Climatol., 46, 1324– 1340
Chen, T.-C., M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle, 2014: Impact of afternoon thunderstorms on the land–sea breeze in the Taipei basin during summer: An experiment. J. Appl. Meteor. Climatol., 53, 1714–1738
Chen, T.-C., J.-D. Tsay, E. S. Takle, 2016: A Forecast Advisory for Afternoon Thunderstorm Occurrence in the Taipei Basin during Summer Developed from Diagnostic Analysis. Wea. Forecasting, 31, 531–552
Dunne, J.-P, and Coauthors, 2012: GFDL’s ESM2 global coupled climate–carbon Earth System Models. Part I: Physical formulation and baseline simulation characteristics. J. Climate, 25, 6646–6665.
Fairall, C. W., E. F. Bradley, D. P. Rogers, J. B. Edson, and G. S. Young, 1996: Bulk parameterization of airsea fluxes for Tropical Ocean-Global Atmosphere Coupled- Ocean Atmosphere Response Experiment. J. Geophys. Res., 101 (C2), 3747–3764.
Hong, S.-Y, Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341
Huang, W.-R., Y.-H. Chang, C.-T. Cheng, H.-H. Hsu, C.-Y. Tu, and A. Kitoh, 2016: Summer convective afternoon rainfall simulation and projection using WRF driven by global climate model. Part I: Over Taiwan. Terr. Atmos. Ocean. Sci., 27, 659–671
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103
IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp
Kain, J., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan island. Wea. Forecasting, 26, 44–60
Lin, P. F., P. L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2012: Objective prediction of warm season afternoon thunderstorms in northern Taiwan using a fuzzy logic approach. Wea. Forecasting, 27, 1178–1197
Pan, T.-Y., Y.-T. Yang, H.-C. Kuo, Y.-C. Tan, J.-S. Lai, T.-J. Chang, C.-S. Lee, K.-H. Hsu, 2013: Improvement of watershed flood forecasting by typhoon rainfall climate model with an ANN-based southwest monsoon rainfall enhancement. J. Hydrol., 506, 90–100
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
指導教授 林沛練(Pay-Liam Lin) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明