博碩士論文 106324068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:167 、訪客IP:18.222.120.133
姓名 王承洋(Cheng-Yang Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 二甲基甲醯胺之特殊潤濕行為: 擴散、收縮、移動
(Peculiar wetting behavior of N,N-dimethylformamide: expansion, contraction, and running)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 二甲基甲醯胺為非揮發性溶液,其液滴在某些表面可表現非典型潤濕行
為,如: poly(methyl methacrylate)、經燃燒處理過的黃銅和藍寶石基材。類
似於水液滴擴散於完全潤濕性質基材,二甲基甲醯胺液滴展現一自發性擴
散,其擴散係數大於Tanner’s law。 液滴在擴散時,液滴的外圍厚度高於其
中心。與典型擴散不同,液滴在擴張到一定程度後會停止並開始向內收縮。
最終,液滴在五分鐘內會縮成球帽形狀並有著相當低的接觸角角度。有趣的
是,若在二甲基甲醯胺中添加界面活性劑,液滴會在擴張並收縮後表現一自
發性移動。其移動軌跡為隨機路線,擴散係數為0.005~0.01 mm2/s。有別於
大多數自發移動為反應性移動,二甲基甲醯胺液滴可重複跨越其經過的軌
跡。這種自發性移動可以被歸功於無接觸角遲滯的基材和Marangoni stress。
基於這些結果,我們提出了一種有關液滴的擴散、收縮和移動機制。
摘要(英) The nonvolatile N,N-dimethylformamide (DMF) droplet can display peculiar
wetting behavior on some substrates such as poly(methyl methacrylate), flametreated
brass, and sapphire. Similar to the expansion of a water drop on a total
wetting surface, the DMF droplet shows a spontaneous spreading initially but its
spreading dynamics is beyond Tanner’s law. The spreading droplet exhibits a
ridge near the rim whose height is greater than that of the center. Contrary to
typical spreading, the DMF droplet stops its outward expansion at some point and
begins inward contraction. Eventually, the droplet shrinks to a spherical cap with
a low contact angle within 5 min. It is interesting to find that upon addition of
surface-active agents, the droplet performs the self-propelled motion after
spreading-contraction. The trajectory is random and can be described as the
diffusive motion with the diffusivity ~0.005- ~0.01 mm2/s. Unlike self-propulsion
driven by reactive wetting, the DMF droplet can cross the trail left by itself. This
self-propulsion can be attributed to the effects of the hysteresis-free surface and
Marangoni stress. Based on those results, a mechanism explaining the contraction
and self-propelled droplet motion is proposed.
關鍵字(中) ★ 二甲基甲醯胺
★ 潤濕現象
★ 接觸角
★ 親水性
★ 自體移動
關鍵字(英) ★ N,N-dimethylformamide
★ wetting behavior
★ contact angle
★ hydrophilic
★ self-propulsion
論文目次 摘要 .................................................................................................................... i
ABSTRACT ....................................................................................................... ii
誌謝 ................................................................................................................... iii
LIST OF CONTENTS ...................................................................................... iv
LIST OF FIGURES ........................................................................................... v
CHAPTER 1 INTRODUCTION ....................................................................... 1
CHAPTER 2 EXPERIMENT ............................................................................ 4
2-1 Materials ................................................................................................... 4
2-2 Fabrication of Flamed Brass ..................................................................... 4
2-3 Observation of Shape Dynamics and Droplet Motion ............................. 4
2-4 Wettability Characterization ..................................................................... 5
2-5 Relative Humidity Control ....................................................................... 5
CHAPTER 3 RESULT AND DICUSSION ....................................................... 6
3-1 Expansion and contraction of DMF on various surfaces ......................... 6
3-2 Effect of additives and self-running droplets ......................................... 12
3-3 Humidity and Mechanism....................................................................... 18
CHAPTER 4 CONCLUSION ......................................................................... 23
CHAPTER 5 SUPPORTING INFORMATION .............................................. 25
CHPATER 6 REFERENCE ............................................................................. 27
參考文獻 [1] Sharma, J.; Mahima, S; Kakade, B. A.; Pasricha, R.; Mandale, A. B.;
Vijayamohanan, K. Solvent-Assisted One-Pot Synthesis and Self-Assembly of
4-Aminothiophenol-Capped Gold Nanoparticles. J. Phys. Chem. B 2004, 108,
13280–13286.
[2] Osakada, K.; Taniguchi, A.; Kubota, E.; Dev, S.; Tanaka, K.; Kubota, K.;
Yamamoto, T. New Organosols of Copper(II) Sulfide, Cadmium Sulfide, Zinc
Sulfide, Mercury(II) Sulfide, Nickel(II) Sulfide and Mixed Metal Sulfides in
N,N-Dimethylformamide and Dimethyl Sulfoxide. Preparation,
characterization, and physical properties. Chem. Mater. 1992, 4, 562–570.
[3] Durmaz, H.; Dag, A.; Altintas, O.; Erdogan, T.; Hizal, G.; Tunca, U. One-Pot
Synthesis of ABC Type Triblock Copolymers via in situ Click [3+2] and
Diels−Alder [4+2] Reactions. Macromolecules 2007, 40, 191–198.
[4] Goals, P. L.; Tsarevsky, N. V.; Sumerlin, B. S.; Matyjaszewski, K. Catalyst
Performance in “Click” Coupling Reactions of Polymers Prepared by ATRP:
Ligand and Metal Effects. Macromolecules 2006, 39, 6451–6457.
[5] Hsu, C.-M.; Shivkumar, S. N,N-Dimethylformamide Additions to the Solution
for the Electrospinning of Poly(e-caprolactone) Nanofibers. Mater. Eng. 2004,
289, 334–340.
[6] Lei, D.; Ying, X.; Zou, Z. Electrospinning of Polycaprolatone Nanofibers with
DMF Additive: The Effect of Solution Proprieties on Jet Perturbation and Fiber
Morphologies. Fiber Polym 2016, 17, 751–759.
[7] Yamamoto, H.; Yano, H.; Kouchi, H.; Obora, Y.; Arakawa, R.; Kawasaki, H.
N,N-Dimethylformamide-Stabilized Gold Nanoclusters as a Catalyst for the
Reduction of 4-nitrophenol. Nanoscale 2012, 4, 4148–4154.
28
[8] Tyagi, R.; Kaur, N.; Singh, B.; Kishore, D. Noteworthy Mechanistic
Precedence in the Exclusive Formation of One Regioisomer in the Beckmann
Rearrangement of Ketoximes of 4-Piperidones Annulated to Pyrazoloindole
Nucleus by Organocatalyst Derived from TCT and DMF. Synth. Commun.
2013, 43, 16–25.
[9] Semsarzadeh, M. A.; Amiri, S.; Azadeh, M. Controlled Radical Polymerization
of Vinyl Acetate in Presence of Mesoporous Silica Supported TiCl4
Heterogeneous Catalyst. Bull. Mater. Sci. 2012, 35, 867–874.
[10] Mohammad, B. T.; Ahmad, T. N,N-Dimethylformamide-Promoted Reaction
of Isocyanides and Barbituric Acids: an Easy Synthesis of 5-[(Alkyl or
Arylamino) Methylene]Barbituric Acids. J. Chem. Res. 2010, 34, 140–144.
[11] Kumar, R.; Wadhwa, D.; Prakash, O. Beckmann Rearrangement of 2-
Hydroxy-5-Methylacetophenone Oxime using Vilsmeier-Haack Reagent
(POCI3/ DMF): Synthesis of Some New Heterocycles. Heterocycl. Commun.
2010, 16, 201–205.
[12] Majid, M. H.; Mahdieh, G.; Leyla, M. Beyond a Solvent: Triple Roles of
Dimethylformamide in Organic Chemistry. RSC Adv. 2018, 8, 27832–27862.
[13] Liu, Y.; He, G.; Chen, K.; Jin, Y.; Li, Y.; Zhu, H. DMF-Catalyzed Direct and
Regioselective C–H Functionalization: Electrophilic/Nucleophilic 4-
Halogenation of 3-Oxypyrazoles. Eur. J. Org. Chem. 2011, 2011, 5323–5330.
[14] Rai, A.; Rai, V. K.; Singh, A. K.; Yadav, L. D. S. [2 + 2] Annulation of
Aldimines with Sulfonic Acids: A Novel One-Pot cis-Selective Route to β-
Sultams. Eur. J. Org. Chem. 2011, 2011, 4302–4306.
[15] Kawasaki, H.; Yamamoto, H.; Fujimori, H.; Arakawa, R.; Inada, M.; Iwasaki,
S. Surfactant-Free Solution Synthesis of Fluorescent Platinum
Subnanoclusters. Chem. Commun. 2010, 46, 3759–3761.
[16] Hyotanishi, M.; Isomura, Y.; Yamamoto, H.; Kawasaki, H.; Obora, Y.
Surfactant-Free Synthesis of Palladium Nanoclusters for Their Use in Catalytic
Cross-Coupling Reaction. Chem. Commun. 2011, 47, 5750–5752.
29
[17] Isomura, Y.; Narushima, T.; Kawasaki, H.; Yonezawa, T.; Obora, Y.
Surfactant-Free Single-Nano-Sized Colloidal Cu Nanoparticles for Use as An
Active Catalyst in Ullmann-Coupling Reaction. Chem. Commun. 2012, 48,
3784–3786.
[18] Gascoyne, P. R. C.; Vykoukal, J. V.; Schwartz, A. A.; Anderson, T. J;
Vykoukal, D. M.; Wayne K.; McConaghy, C. C.; Becker, F. F.; Andrews, C.
Dielectrophoresis-Based Programmable Fluidic Processors. Lab Chip 2004, 4,
299-309.
[19] Lee, M.-Y.; Srinivasan, A.; Ku, B.; Dordick, J. S. Multienzyme Catalysis in
Microfluidic Biochips. Biotechnol Bioeng. 2003, 83, 20-8.
[20] Wu, C.-J.; Huang, C.-J.; Jiang, S.; Sheng, Y.-J.; Tsao, H.-K.
Superhydrophilicity and Spontaneous Spreading on Zwitterionic Surfaces:
Carboxybetaine and Sulfobetaine. RSC Adv. 2016, 6, 24827-24834.
[21] Singh, V.; Huang, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Smart Zwitterionic
Sulfobetaine Silane Surfaces with Switchable Wettability for
Aqueous/Nonaqueous Drops. J. Mater. Chem. A 2018, 6, 2279–2288
[22] Tanner, L. H. The Spreading of Silicone Oil Drops on Horizontal Surfaces. J.
Phys. D: Appl. Phys. 1979, 12, 1473–1484.
[23] Singh, V.; Wu, C.-J.; Sheng, Y.-J.; Tsao, H.-K. Self-Propulsion and Shape
Restoration of Aqueous Drops on Sulfobetaine Silane Surfaces. Langmur 2017,
33, 6182-6191.
[24] Li, S.; Liu, J.; Hou, J.; Zhang, G. Meniscus-Induced Motion of Oil Droplets.
Coll. Surf. A: Physicochem. Eng. Aspects 2016, 469, 252-255.
[25] Izri, Z.; van der Linden, M. N.; Michelin, S.; Dauchot, O. Self-Propulsion of
Pure Water Droplets by Spontaneous Marangoni-Stress-Driven Motion. Phys.
Rev. Lett. 2014, 113, 248302.
[26] Schmitt M.; Stark, H. Marangoni Flow at Droplet Interfaces: Three-
Dimensional Solution and Applications. Phys. Fluids 2016, 28, 012106.
30
[27] Myers D. Surfaces, Interfaces, and Colloids: Principles and Applications;
Wiley-VCH: New York, 1999; pp 415-420.
[28] Cira, N. J.; Benusiglio, A.; Prakash, M. Vapour-Mediated Sensing and
Motility in Two-Component Droplets. Nature 2015, 519, 446-450.
[29] Malvadkar, N. A.; Hancock, M. J.; Sekeroglu, K.; Dressick, W. J.; Demirel,
M. C. An Engineered Anisotropic Nanofilm with Unidirectional Wetting
Properties. Nat. Mater. 2010, 9, 1023−1028.
[30] Varagnolo, S.; Schiocchet, V.; Ferraro, D.; Pierno, M.; Mistura, G.; Sbragaglia,
M.; Gupta, A.; Amati, G. Tuning Drop Motion by Chemical Patterning of
Surfaces. Langmuir 2014, 30, 2401−2409.
[31] Yao, X.; Bai, H.; Ju, J.; Zhou, D.; Li, J.; Zhang, H.; Yang, B.; Jiang, L.
Running Droplet of Interfacial Chemical Reaction Flow. Soft Matter 2012, 8,
5988-5991.
[32] Wei, H.-H. Marangoni-Enhanced Capillary Wetting in Surfactant-Driven
Superspreading. J. Fluid Mech. 2018, 855, 181-2.
[33] Theodorakis, P. A.; Muller, E. A.; Craster, R. V.; Matar, O. K. Superspreading:
Mechanism and Molecular Design. Langmuir 2015, 31, 2304-2309.
[34] Rafai, S.; Sarker, D.; Bergeron, V.; Meunier, J.; Bonn, D. Superspreading:
Aqueous surfactant Drops Spreading on Hydrophobic Surfaces. Langmuir
2002, 18, 10486-10488.
[35] Dominguez, H.; Pizio, O. On the Composition Dependence of the
Microscopic Structure, Thermodynamic, Dynamic and Dielectric Properties of
Water-Dimethyl formamide Model Mixtures. Molecular dynamics simulation
results, J. Phys. Condens. Matter. 2017, 20, 43602:1-15.
[36] Weng, Y.-H.; Wu, C.-J.; Tsao, H.-K.; Sheng, Y.-J. Spreading Dynamics of a
Precursor Film of Nanodrops on Total Wetting Surfaces. Phys. CHem. Chem.
Phys. 2017, 19, 27786.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2019-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明