博碩士論文 106324012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.147.46.174
姓名 黃柏榕(Po-Jung Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米尺度下界面活性劑的吸附與聚集之強烈競爭關係
(Strong Competition between Adsorption and Aggregation of Surfactant in Nanoscale Systems)
相關論文
★ 單一高分子在接枝表面的吸附現象-分子模擬★ 化學機械研磨的微觀機制探討
★ 界面活性劑與微脂粒的作用★ 家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附
★ 液滴潤濕與接觸角遲滯★ 親溶劑奈米粒子於高分子溶液中的自組裝現象
★ 具界面活性溶質之蒸發殘留圖形研究★ 奈米自泳動粒子之擴散行為
★ 抗氧化奈米銅粒子的製備及分析★ 柱狀自泳動粒子之擴散行為與沉降平衡
★ 過氧化氫的界面性質與穩定性★ 液橋分離與液面爬升物體之研究
★ 電潤濕動態行為探討★ 表面粗糙度對接觸角遲滯影響之效應
★ 以耗散粒子動力學法研究奈米自泳動粒子輸送現象★ 低溫還原氧化石墨烯薄膜
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 當兩種物質相分離所形成的分界,我們稱其為界面,而界面活性劑即為一種可改變界面性質的化合物。本研究利用多體耗散粒子動力學法,探討奈米尺度下界面活性劑的界面吸附與液相聚集之強烈競爭關係,並分別從液氣相、固液相、固液氣三相探討其影響程度。
在液氣相情況下,於奈米液膜其表面張力、表面密度和臨界微胞濃度皆受到尺度所影響。隨著濃度的增加,即使已超過臨界微胞濃度,表面密度依舊持續上升。唯有當其體濃度超過臨界微胞濃度數十倍才有機會使表面達飽和。在模擬系統可以清楚的看到有吸附於液氣界面的表面微胞和存在於副層的界面活性劑。前者可減少界面活性劑疏水尾端與液體粒子的接觸,後者的界面活性劑濃度則明顯高於液相內界面活性劑濃度。
奈米尺度下界面活性劑的強烈的交互作用(吸附行為與微胞化)可歸因於在宏觀系統下有相對大的表體比;事實上,可將此交互作用描述為界面活性劑在液相內和界面上數量的比例關係,其比值總小於1在奈米尺度下。
接著,於固液相情形下,改變界面活性劑性質將對結果造成不同的影響;由於疏水尾端粒子與親水頭基粒子數量上的差距,使得結果有所不同。最後,於固液氣三相,不論界面活性劑的性質改變,液氣界面皆為其偏好分佈的首選目標,固液界面與液相的競爭關係則決定於其性質變化。
摘要(英) The Interface is the boundary of two incompatible material, and surfactant can change the property of interface. Strong competition between interface adsorption and bulk aggregation of surfactant in nanoscale systems was explored by Many-body Dissipative Particle Dynamics simulations. Moreover, the interface adsorption and bulk aggregation in nanoscale systems are investigated in liquid/vapor, solid/liquid and solid/liquid/vapor phases.
First of all, in the system of liquid/vapor phases, the size-dependent behavior including surface tension (, surface density (, and critical micelle concentration (CMC) was illustrated by considering a nanofilm with the thickness L. It is found that in nanoscale systems as the surfactant concentration increases,  continues rising even after CMC is exceeded. The saturation level of  is achieved only when the surfactant bulk concentration is over ten times of CMC. Moreover, both surface micelles formed by adsorbed surfactant and the sublayer below the adsorbed layer are clearly identified. The former can reduce the contacts of adsorbed surfactant with water, while the latter has the surfactant concentration significantly higher than that in bulk. The strong coupling between adsorption and micellization is attributed to large surface-to-volume ratio compared to macroscopic systems, and can be simply realized by the fact that the ratio of the numbers of surfactant distributed in bulk (nbulk) and at interface (nads) is always less than unity (nbulk/nads < 1) in nanoscale systems.
Besides, in the system of solid/liquid phases, the change of surfactant property would make significantly different results. Due to the majority of amount, the hydrophobic tail plays a more important role over the hydrophilic head. Nevertheless, despite the variation of the surfactant property in the system of solid/liquid/vapor phases, the liquid-vapor interface is always the priority for the surfactant to stay. However, the preference of the solid-liquid interface and bulk for surfactant would depend on its property.
關鍵字(中) ★ 界面活性劑
★ 奈米尺度
★ 吸附
★ 微胞化
關鍵字(英) ★ surfactant
★ nanoscale
★ adsorption
★ micellization
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
表目錄 VII
圖目錄 VIII
1 第一章 緒論 1
1-1 前言 1
1-2 奈米尺度下的特殊性質 1
1-3 界面活性劑 2
1-4 界面活性劑性質對臨界微胞濃度之影響 8
1-5 研究動機 9
2 第二章 分子模擬原理與方法 14
2-1 多體耗散粒子動力學(Many-body Dissipative Particle Dynamics) 14
2-2 MDPD原理 16
2-2-1 MDPD作用力 16
2-2-2 噪訊與時間尺度 21
2-2-3 弗洛里-哈金斯理論(Flory-Huggins Theory) 22
2-2-4 長度、速度、時間尺度的無因次化 25
2-2-5 積分法求解 26
2-2-6 週期性邊界條件 28
2-2-7 Cell List 表列法 29
2-3 模擬系統與參數 31
2-3-1 系統基本參數設定 31
2-3-2 粒子的設定 32
3 第三章 界面活性劑於液氣界面之競爭行為 34
3-1 臨界微胞濃度對奈米薄膜厚度之依賴性 34
3-2 等溫吸附曲線和表面微胞之觀察 44
3-3 副層和界面活性劑吸附與聚集之關聯性 50
4 第四章 界面活性劑於固液界面之競爭行為 58
4-1 觀察界面活性劑性質之影響 58
5 第五章 界面活性劑於固液氣三態之競爭行為 67
5-1 界面活性劑於三態的競爭關係 67
6 第六章 結論 73
7 第七章 參考文獻 75
參考文獻 [1] Sanjay, Sharda Sundaram, and Avinash C. Pandey. "A brief manifestation of nanotechnology." EMR/ESR/EPR Spectroscopy for Characterization of Nanomaterials. Springer, New Delhi, 2017. 47-63.
[2] Guisbiers, Gregory. "Size-dependent materials properties toward a universal equation." Nanoscale Research Letters 5.7 (2010): 1132.
[3] Guisbiers, Grégory, Sergio Mejía-Rosales, and Francis Leonard Deepak. "Nanomaterial properties: size and shape dependencies." Journal of Nanomaterials 2012 (2012).
[4] Cao, Fangyu, et al. "Probing nanoscale thermal transport in surfactant solutions." Scientific reports 5 (2015): 16040.
[5] Sharma, P., S. Ganti, and N. Bhate. "Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities." Applied Physics Letters 82.4 (2003): 535-537.
[6] Crosby, Alfred J., and Jong‐Young Lee. "Polymer nanocomposites: the “nano” effect on mechanical properties." Polymer reviews 47.2 (2007): 217-229.
[7] Shah, Sujit Kumar, Ajaya Bhattarai, and Sujeet Kumar Chatterjee. "Applications of surfactants in modern science and technology." Prof. Dr. Devendra Adhikari Department of Physics, Mahendra Morang Adarsha Multiple Campus Tribhuvan University, Biratnagar, Nepal Email: adksbdev@ yahoo. com(2013): 147.
[8] Schramm, Laurier L., Elaine N. Stasiuk, and D. Gerrard Marangoni. "2 Surfactants and their applications." Annual Reports Section" C"(Physical Chemistry) 99 (2003): 3-48.
[9] Shah, S. K., A. Bhattarai, and S. K. Chatterjee. "Surfactants, its applications and effects on environment." Bibechana 7 (2011): 61-64.
[10] Morsy, Salwa MI. "Role of surfactants in nanotechnology and their applications." Int. J. Curr. Microbiol. App. Sci 3.5 (2014): 237-260.
[11] D. G. HALL, G. J. T. TIDDY, Anionic Surfactants: Physical Chemistry of Surfactant Action, 11, 55-108(1981)
[12] Ramesh Varadaraj, Jan Bock, Paul Valint, Jr., Stephen Zushma, and Robert Thomas, Fundamental interfacial properties of alkyl-branched surfate and ethoxy sulfate surfactants derived from guerbet alcohol. 1. surface and instantaneous interfacial tensions,the journal of physical chemistry, Vol. 95, No. 4, 1991.
[13] Schick, Martin J. "Nonionic surfactants." surfactant science series 23 (1987).
[14] Kunitake, Toyoki, et al. "Formation of stable bilayer assemblies in water from single-chain amphiphiles. Relationship between the amphiphile structure and the aggregate morphology." Journal of the American Chemical Society 103.18 (1981): 5401-5413.
[15] Vreede, Jocelyne, Marieke Kranenburg, and Berend Smit. "DPD simulations of surfactants in oil-water systems." University of Amsterdam (2001).
[16] Domínguez, Hector. "Self-aggregation of the SDS surfactant at a solid− liquid interface." The Journal of Physical Chemistry B111.16 (2007): 4054-4059.
[17] Li, Yiming, et al. "Aggregation behavior of surfactants with different molecular structures in aqueous solution: DPD simulation study." Journal of Dispersion Science and Technology33.10 (2012): 1437-1443.
[18] Hoogerbrugge, P. J., and J. M. V. A. Koelman. "Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics." EPL (Europhysics Letters) 19.3 (1992): 155.
[19] Groot, Robert D., and Patrick B. Warren. "Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation." The Journal of chemical physics 107.11 (1997): 4423-4435.
[20] Pagonabarraga, I., and D. Frenkel. "Dissipative particle dynamics for interacting systems." The Journal of Chemical Physics 115.11 (2001): 5015-5026.
[21] Trofimov, S. Y., E. L. F. Nies, and M. A. J. Michels. "Thermodynamic consistency in dissipative particle dynamics simulations of strongly nonideal liquids and liquid mixtures." The Journal of chemical physics 117.20 (2002): 9383-9394.
[22] Warren, P. B. "Vapor-liquid coexistence in many-body dissipative particle dynamics." Physical Review E 68.6 (2003): 066702.
[23] Espanol, Pep, and Patrick Warren. "Statistical mechanics of dissipative particle dynamics." EPL (Europhysics Letters) 30.4 (1995): 191.
[24] Allen, M. P., and D. J. Tildesley. "Computer simulation of liquids. 1987." New York: Oxford 385 (1989).
[25] Groot, Robert D., and Timothy J. Madden. "Dynamic simulation of diblock copolymer microphase separation." The Journal of chemical physics 108.20 (1998): 8713-8724.
[26] Rapaport, Dennis C., and Dennis C. Rapaport Rapaport. The art of molecular dynamics simulation. Cambridge university press, 2004.
[27] Mao, Runfang, et al. "Modeling aggregation of ionic surfactants using a smeared charge approximation in dissipative particle dynamics simulations." The Journal of Physical Chemistry B 119.35 (2015): 11673-11683.
[28] Tomassone, M. S., et al. "Phase Transitions of Soluble Surfactants at a Liquid− Vapor Interface." Langmuir 17.20 (2001): 6037-6040.
[29] Chung, Bonghoon, et al. "Subphase pH effect on surface micelle of polystyrene-b-poly (2-vinylpyridine) diblock copolymers at the air− water interface." Macromolecules 39.2 (2006): 684-689.
[30] Choi, Myunghoon, et al. "Surface micelle formation of polystyrene-b-poly (2-vinyl pyridine) diblock copolymer at air-water interface." Macromolecular research 12.1 (2004): 127-133.
[31] Phan, Chi Minh, et al. "Micelle and Surface Tension of Double-Chain Cationic Surfactants." ACS Omega 3.9 (2018): 10907-10911.
[32] Mucic, N., et al. "Adsorption of equimolar aqueous sodium dodecyl sulphate/dodecyl trimethylammonium bromide mixtures at solution/air and solution/oil interfaces." Colloid and Polymer Science 293.11 (2015): 3099-3106.
[33] Taylor, D. J. F., R. K. Thomas, and J. Penfold. "Polymer/surfactant interactions at the air/water interface." Advances in colloid and interface science 132.2 (2007): 69-110.
[34] Lu, J. R., et al. "Structure of the surface of a surfactant solution above the critical micelle concentration." The Journal of Physical Chemistry 97.51 (1993): 13907-13913.
[35] Song, Qing, and Mingjun Yuan. "Visualization of an adsorption model for surfactant transport from micelle solutions to a clean air/water interface using fluorescence microscopy." Journal of colloid and interface science 357.1 (2011): 179-188.
[36] Pan, Rennan, John Green, and Charles Maldarelli. "Theory and experiment on the measurement of kinetic rate constants for surfactant exchange at an air/water interface." Journal of colloid and interface science 205.2 (1998): 213-230.
指導教授 曹恆光(Heng-Kwong Tsao) 審核日期 2019-6-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明