參考文獻 |
Abdelaal, M.Y. and Mohamed, R.M. (2013), Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. J. Alloys Compd., 576, 201–207.
Abdelraheem, W. H. M., Patil, M. K., Nadagouda, M. N., and Dionysiou, D. D. (2019), Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl. Catal. B-Environ., 241, 598-611.
Akita, T., Lu, P., Ichikawa, S., Tanaka, K. and Haruta, M. (2001), Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Surf. Interface Anal., 31, 73-78.
Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P. and Muneer, M. (2018), Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys., 212, 325–335.
Arabatzis, I.M., Stergiopoulos, T., Bernard, M.C., Labou, D., Neophytides, S.G. and Falaras, P. (2003), Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B-Environ., 42, 187–201.
Banerjee, S., Dionysiou, D. and Pillai, S. (2015), Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B-Environ., 176-177, 396-428.
Chong, M.N., Jin, B., Chow, C.W. and Saint C. (2010), Recent developments in photocatalytic water treatment technology: A review. Water Res., 44, 2997-3027.
Daghrir, R., Drogui, P. and Robert, D. (2013), Modified TiO2 for environmental photocatalytic applications : A Review. Ind. Eng. Chem. Res., 52, 3581–3599.
Hashimoto, K., Irie, H. and Fujishima, A. (2005), TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys., 44, 8269-8285.
Herrmanna, J.-M., Tahiria, H., Ait-Ichou, Y., Lassaletta, G., Gonzalez-Elipe, A.R. and Fernabdez, A. (1997), Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag- TiO2 coatings on quartz. Appl. Catal. B-Environ., 13, 219-228.
Irie, H. and Hashimoto, K. (2005), Photocatalytic active surfaces and photo-Induced high hydrophilicity/high hydrophobicity. Handbook of Environmental Chemistry, 425-450.
Jung, H., Koo, B., Kim, J.-Y., Kim, T., Son, H. J., Kim, B., Kim, J. Y., Lee, D.-K., Kim, H., Cho, J. and Ko, M.J. (2014), Enhanced photovoltaic properties and long-term stability in plasmonic dye-Sensitized solar cells via noncorrosive redox mediator. ACS Appl. Mater. Interfaces, 6, 19191-19200.
Kong, X., Zeng, C., Wang, X., Huang, J., Li, C., Fei, J., Li, J. and Feng, Q. (2016), Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide. Sci. Rep., 6.
Li, F.B. and Li, X.Z. (2002), The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere, 48, 1103–1111.
Liu, S.X., Qu, Z.P., Han, X.W. and Sun, C.L. (2004), A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catal. Today, 93–95, 877–884.
Lee, D.S. and Chen, Y.W. (2014), Nano Ag/TiO2 catalyst prepared by chemical deposition and its photocatalytic moactivity. J. Taiwan Inst. Chem. E., 45, 705-712.
Matsuoka, M. and Anpo, M. (2010), Applications of environmentally friendly TiO2 photocatalysts in green chemistry: environmental purification and clean energy production under solar light irradiation. Handbook of Green Chemistry, Volume 2: Heterogeneous Catalysis. Crabtree: Robert H.
Moongraksathum, B. and Chen,Y.W. (2017), CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Sci. Technol., 82, 772–782.
Nakata, K. and Fujishima, A. (2012), TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C., 13, 169-189.
Neppolian, B., Jung, H. and Choi, H. (2007), Photocatalytic degradation of 4-Chlorophenol using TiO2 and Pt–TiO2 nanoparticles prepared by sol-gel method. J. Adv. Oxid. Technol., 10, 369-374.
Nosaka, Y. and Nosaka, A. (2017), Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev., 117, 11302-11336.
Park, H., Kim, D., Kim, S. and Lee, K. (2006), The photocatalytic activity of 2.5 wt.% Cu-doped TiO2 nano powders synthesized by mechanical alloying. J. Alloy. Compd., 415, 51-55.
Park, H., Park, Y., Kim, W. and Choi, W. (2013), Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol., 15, 1– 20.
Pugazhenthiran, N., Murugesan, S., Anandan, S. (2013), High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium. J. Hazard Mater., 263 , 541-549.
Rabhi, S., Belkacemi, H., Bououdina, M., Kerrami, A., Ait Brahem, L., and Sakher, E. (2019), Effect of Ag doping of TiO2 nanoparticles on anatase-rutile phase transformation and excellent photodegradation of amlodipine besylate. Mater. Lett., 236, 640-643.
Rahimi, N., Pax, R. A. and Gray, E. M. (2016), Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Ch., 44, 86-105
Rao, K.V.S., Lavédrine, B. and Boule, P. (2003), Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates. J. Photochem. Photobiol. A: Chem., 154, 189-193.
Ribao, P., Corredor, J., Rivero, M. J., Ortiz, I. (2019), Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard Mater., 372, 45-51.
Saha, B., Kumar, S., Sengupta, S. (2019), Green Synthesis of Nano silver on TiO2 catalyst for application in oxidation of thiophene. Chem. Eng. Sci., 199, 332-341.
Sclafani, A., Mozzanega, M-N. and Pichat, P. (1991), Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A: Chem., 59, 181-189.
Standridge, S.D., Schatz , G.C. and Hupp , J.T. (2009), Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc., 131, 8407-8409.
Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. and Bae, Y.C. (2004), Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A: Chem., 163, 37–44.
Szabó-Bárdos, E., Czili, H. and Horváth, A. (2003), Photocatalytic oxidation of oxalic acid enhanced by silver. J. Photochem. Photobiol. A: Chem., 154, 195–201.
Teh, C. M. and Mohamed, A. R. (2011), Role of titanium dioxide and ion-doped titanium dioxide on phtotocatalytic degradation of organic pollutants (phenol compounds and dyes) in aqueous solutions: A review. J. Alloys Compd., 509, 1648−1660.
Tran, H., Chiang, K., Scott, J. and Amal, R. (2005), Understanding selective enhancement by silver during photocatalytic oxidation. Photochem. Photobiol. Sci., 4, 565–567.
Tsuji, M., Matsuda, K., Tanaka, M., Kuboyama, S., Uto, K., Wada, N., Kawazumi, H., Tsuji, T., Ago, H. and Hayashi, J.-I. (2018), Enhanced photocatalytic degradation of methyl orange by Au/TiO2 nanoparticles under neutral and acidic solutions. ChemistrySelect, 3, 1432 –1438.
Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D. and Hull, M. S. (2015), Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol., 6, 1769–1780.
Wang, C.Y., Liu, C.Y., Zheng, X., Chen, J. and Shen, T. (1998), The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloid Surf. A-Physicochem. Eng. Asp., 131, 271-280.
Yalcin, Y., Kiliç, M. and Cinar, Z. (2010), Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Appl. Catal. B-Environ., 99, 469−477.
Zhang, Y., Li, M. and Guo, Y. (2018), Preparation, characterization and photocatalytic activity of Ag/TiO2 nanoparticle semiconductor catalysts. IOP Conf. Ser.: Earth Environ. Sci., 108, 022022.
Zhong, J.B., Lu, Y., Jiang, W.D., Meng, Q.M., He, X.Y., Li, J.Z. and Chen, Y.Q. (2009), Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. J. Hazard. Mater., 168, 1632–1635. |