博碩士論文 106324040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:18.227.48.30
姓名 曾卉蓁(Hui-Jen Tseng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 Ag/TiO2製備方法對於光催化活性的影響
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 二氧化鈦光觸媒以其優異的環境自潔能力引起相當大的關注。然而由於其能隙較大,因此半導體材料的光吸收效果及超親水性的轉化僅限於紫外光波段。然而,由於二氧化鈦具有較寬能隙,因此其在可見光區域下的活性效率低。本研究目的是研究紫外光照射下亞甲藍降解的光催化效果,並分別以光還原法和含浸法製備Ag摻雜的Evonik-Degussa的商業二氧化鈦粉末。所有樣品均通過X射線衍射和高分辨率透射電子顯微鏡表徵。光催化反應在10ppm亞甲基藍溶液中進行,其中四個9瓦 UVC光(波長為254奈米)燈管作為UV光源以及四個9瓦可見光燈管作為可見光源。以紫外光-可見分光光譜儀測量樣品的亞甲基藍降解濃度。研究發現摻雜銀增加二氧化鈦的粒徑大小。添加銀能夠產生等離子體效應。銀陽離子呈銀一價離子形式摻入二氧化鈦晶格中,使得二氧化鈦表面缺陷。在二氧化鈦晶格中銀一價離子取代鈦四價離子的位置中存在的負責增加UVC光吸收並引起光誘導電子的偏析,從而抑制電子和空穴的複合。光催化活性結果顯示以含浸法製備的樣品比光還原法製備的樣品更高的光催化活性,因為含浸法比光還原法產生更高的銀分散。在紫外和可見光照射下,銀摻雜二氧化鈦比原始二氧化鈦具有更高的光催化活性。
摘要(英) TiO2 based photocatalysts have acquired considerable attention due to the outstanding functions of environmental cleaning such as pollution removal. However, since TiO2 has a wide band gap, its activity under visible region has low efficiency. The main purpose of this study was to investigate the photocatalytic effectiveness of degradation of methylene blue under the ultraviolet light irradiation. Ag-doped TiO2 powders were prepared by photoreduction and impregnation methods, respectively. Commercial TiO2 from Evonik-Degussa (P-25) was used in this study. All the samples were characterized by X-ray diffraction and high resolution-transmission electron microscopy. The photocatalytic reaction was executed in a 10 ppm methylene blue solution with four pieces of 9 W UVC light (254 nm wave length) as the UV light source, and four pieces of 9 W visible light as the visible light source. The degradation sample of the methylene blue concentration was measured by a Ultraviolet-visible spectrophotometer. It was found that doping silver increased the particle size of TiO2. Adding silver can have plasmon effect. The silver cations were in form of Ag+ ions and were incorporated into TiO2 lattice, and led to defect on the surface of TiO2. Ag+ ions presented in the substitutional site of Ti4+ in TiO2 lattice are responsible for increasing UVC light absorption and causing the segregation of the photo-induced electrons so that it could suppress the recombination of electrons and holes. Photocatalytic activity results showed that the samples prepared by impregnation method had a higher photocatalytic activity than those by the photoreduction method since the impregnation method yielded a higher silver dispersion than photoreduction method. The Ag-doped TiO2 showed a higher photocatalytic activity than the pristine TiO2 under UV and visible light irradiation.
關鍵字(中) ★ 二氧化鈦
★ 銀摻雜
★ 光觸媒
★ 光還原法
★ 含浸法
★ 光催化降解
關鍵字(英)
論文目次 中文摘要 I
Abstract II
Acknowledgements IV
Table of Contents V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
Chapter 2 Literature review 3
2.1 Titanium dioxide photocatalyst 3
2.2 Mechanism of TiO2 photocatalysis 3
2.3 Modification of TiO2 photocatalysis 6
2.3.1 Cation doping 7
2.3.2 Noble metal doping 8
2.4 Ag-doped TiO2 as a photocatalyst 14
2.4.1 Mechanism of Ag addition in TiO2 17
Chapter 3 Experimental 19
3.1 Materials 19
3.2 Catalysts preparation 19
3.2.1 Synthesis of Ag/P25 powders by photoreduction method 19
3.2.2 Synthesis of Ag/P25 powders by incipient-wetness impregnation method 20
3.3 Catalysts characterization 21
3.3.1 High-Resolution Transmission Electron Microscopy (HRTEM) 21
3.3.2 X-Ray Diffraction (XRD) 21
3.3.3 X-Ray Photoelectron Spectroscopy (XPS) 23
3.3.4 UV-Visible Spectrophotometer 23
3.4 Photocatalytic degradation of methylene blue 23
Chapter 4 Ag/TiO2 powder by photoreduction method 28
Abstract 28
4.1 Introduction 28
4.2 Results and discussion 29
4.2.1 Characterization of Ag/P25 powders 29
4.2.2 Photocatalytic degradation of methylene blue aqueous solution 44
4.3 Conclusions 49
Chapter 5 Ag/TiO2 powder by impregnation method 50
Abstract 50
5.1 Introduction 50
5.2 Results and discussion 51
5.2.1 Characterization of Ag/P25 powders 51
5.2.2 Photocatalytic degradation of methylene blue aqueous solution 66
5.3 Conclusions 71
Chapter 6 Conclusions 72
References 73
參考文獻 Abdelaal, M.Y. and Mohamed, R.M. (2013), Novel Pd/TiO2 nanocomposite prepared by modified sol–gel method for photocatalytic degradation of methylene blue dye under visible light irradiation. J. Alloys Compd., 576, 201–207.

Abdelraheem, W. H. M., Patil, M. K., Nadagouda, M. N., and Dionysiou, D. D. (2019), Hydrothermal synthesis of photoactive nitrogen- and boron- codoped TiO2 nanoparticles for the treatment of bisphenol A in wastewater: Synthesis, photocatalytic activity, degradation byproducts and reaction pathways. Appl. Catal. B-Environ., 241, 598-611.

Akita, T., Lu, P., Ichikawa, S., Tanaka, K. and Haruta, M. (2001), Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Surf. Interface Anal., 31, 73-78.

Ali, T., Ahmed, A., Alam, U., Uddin, I., Tripathi, P. and Muneer, M. (2018), Enhanced photocatalytic and antibacterial activities of Ag-doped TiO2 nanoparticles under visible light. Mater. Chem. Phys., 212, 325–335.

Arabatzis, I.M., Stergiopoulos, T., Bernard, M.C., Labou, D., Neophytides, S.G. and Falaras, P. (2003), Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal. B-Environ., 42, 187–201.

Banerjee, S., Dionysiou, D. and Pillai, S. (2015), Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal. B-Environ., 176-177, 396-428.
Chong, M.N., Jin, B., Chow, C.W. and Saint C. (2010), Recent developments in photocatalytic water treatment technology: A review. Water Res., 44, 2997-3027.

Daghrir, R., Drogui, P. and Robert, D. (2013), Modified TiO2 for environmental photocatalytic applications : A Review. Ind. Eng. Chem. Res., 52, 3581–3599.

Hashimoto, K., Irie, H. and Fujishima, A. (2005), TiO2 photocatalysis: a historical overview and future prospects. Jpn. J. Appl. Phys., 44, 8269-8285.

Herrmanna, J.-M., Tahiria, H., Ait-Ichou, Y., Lassaletta, G., Gonzalez-Elipe, A.R. and Fernabdez, A. (1997), Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag- TiO2 coatings on quartz. Appl. Catal. B-Environ., 13, 219-228.

Irie, H. and Hashimoto, K. (2005), Photocatalytic active surfaces and photo-Induced high hydrophilicity/high hydrophobicity. Handbook of Environmental Chemistry, 425-450.

Jung, H., Koo, B., Kim, J.-Y., Kim, T., Son, H. J., Kim, B., Kim, J. Y., Lee, D.-K., Kim, H., Cho, J. and Ko, M.J. (2014), Enhanced photovoltaic properties and long-term stability in plasmonic dye-Sensitized solar cells via noncorrosive redox mediator. ACS Appl. Mater. Interfaces, 6, 19191-19200.

Kong, X., Zeng, C., Wang, X., Huang, J., Li, C., Fei, J., Li, J. and Feng, Q. (2016), Ti-O-O coordination bond caused visible light photocatalytic property of layered titanium oxide. Sci. Rep., 6.

Li, F.B. and Li, X.Z. (2002), The enhancement of photodegradation efficiency using Pt–TiO2 catalyst. Chemosphere, 48, 1103–1111.

Liu, S.X., Qu, Z.P., Han, X.W. and Sun, C.L. (2004), A mechanism for enhanced photocatalytic activity of silver-loaded titanium dioxide. Catal. Today, 93–95, 877–884.

Lee, D.S. and Chen, Y.W. (2014), Nano Ag/TiO2 catalyst prepared by chemical deposition and its photocatalytic moactivity. J. Taiwan Inst. Chem. E., 45, 705-712.

Matsuoka, M. and Anpo, M. (2010), Applications of environmentally friendly TiO2 photocatalysts in green chemistry: environmental purification and clean energy production under solar light irradiation. Handbook of Green Chemistry, Volume 2: Heterogeneous Catalysis. Crabtree: Robert H.

Moongraksathum, B. and Chen,Y.W. (2017), CeO2–TiO2 mixed oxide thin films with enhanced photocatalytic degradation of organic pollutants. J. Sol-Gel Sci. Technol., 82, 772–782.

Nakata, K. and Fujishima, A. (2012), TiO2 photocatalysis: Design and applications. J. Photoch. Photobio. C., 13, 169-189.

Neppolian, B., Jung, H. and Choi, H. (2007), Photocatalytic degradation of 4-Chlorophenol using TiO2 and Pt–TiO2 nanoparticles prepared by sol-gel method. J. Adv. Oxid. Technol., 10, 369-374.

Nosaka, Y. and Nosaka, A. (2017), Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev., 117, 11302-11336.

Park, H., Kim, D., Kim, S. and Lee, K. (2006), The photocatalytic activity of 2.5 wt.% Cu-doped TiO2 nano powders synthesized by mechanical alloying. J. Alloy. Compd., 415, 51-55.

Park, H., Park, Y., Kim, W. and Choi, W. (2013), Surface modification of TiO2 photocatalyst for environmental applications. J. Photochem. Photobiol., 15, 1– 20.

Pugazhenthiran, N., Murugesan, S., Anandan, S. (2013), High surface area Ag-TiO2 nanotubes for solar/visible-light photocatalytic degradation of ceftiofur sodium. J. Hazard Mater., 263 , 541-549.

Rabhi, S., Belkacemi, H., Bououdina, M., Kerrami, A., Ait Brahem, L., and Sakher, E. (2019), Effect of Ag doping of TiO2 nanoparticles on anatase-rutile phase transformation and excellent photodegradation of amlodipine besylate. Mater. Lett., 236, 640-643.

Rahimi, N., Pax, R. A. and Gray, E. M. (2016), Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Ch., 44, 86-105

Rao, K.V.S., Lavédrine, B. and Boule, P. (2003), Influence of metallic species on TiO2 for the photocatalytic degradation of dyes and dye intermediates. J. Photochem. Photobiol. A: Chem., 154, 189-193.

Ribao, P., Corredor, J., Rivero, M. J., Ortiz, I. (2019), Role of reactive oxygen species on the activity of noble metal-doped TiO2 photocatalysts. J. Hazard Mater., 372, 45-51.

Saha, B., Kumar, S., Sengupta, S. (2019), Green Synthesis of Nano silver on TiO2 catalyst for application in oxidation of thiophene. Chem. Eng. Sci., 199, 332-341.

Sclafani, A., Mozzanega, M-N. and Pichat, P. (1991), Effect of silver deposits on the photocatalytic activity of titanium dioxide samples for the dehydrogenation or oxidation of 2-propanol. J. Photochem. Photobiol. A: Chem., 59, 181-189.

Standridge, S.D., Schatz , G.C. and Hupp , J.T. (2009), Distance dependence of plasmon-enhanced photocurrent in dye-sensitized solar cells. J. Am. Chem. Soc., 131, 8407-8409.

Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M. and Bae, Y.C. (2004), Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A: Chem., 163, 37–44.

Szabó-Bárdos, E., Czili, H. and Horváth, A. (2003), Photocatalytic oxidation of oxalic acid enhanced by silver. J. Photochem. Photobiol. A: Chem., 154, 195–201.

Teh, C. M. and Mohamed, A. R. (2011), Role of titanium dioxide and ion-doped titanium dioxide on phtotocatalytic degradation of organic pollutants (phenol compounds and dyes) in aqueous solutions: A review. J. Alloys Compd., 509, 1648−1660.

Tran, H., Chiang, K., Scott, J. and Amal, R. (2005), Understanding selective enhancement by silver during photocatalytic oxidation. Photochem. Photobiol. Sci., 4, 565–567.

Tsuji, M., Matsuda, K., Tanaka, M., Kuboyama, S., Uto, K., Wada, N., Kawazumi, H., Tsuji, T., Ago, H. and Hayashi, J.-I. (2018), Enhanced photocatalytic degradation of methyl orange by Au/TiO2 nanoparticles under neutral and acidic solutions. ChemistrySelect, 3, 1432 –1438.

Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Rejeski, D. and Hull, M. S. (2015), Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol., 6, 1769–1780.

Wang, C.Y., Liu, C.Y., Zheng, X., Chen, J. and Shen, T. (1998), The surface chemistry of hybrid nanometer-sized particles I. Photochemical deposition of gold on ultrafine TiO2 particles. Colloid Surf. A-Physicochem. Eng. Asp., 131, 271-280.

Yalcin, Y., Kiliç, M. and Cinar, Z. (2010), Fe+3-doped TiO2: A combined experimental and computational approach to the evaluation of visible light activity. Appl. Catal. B-Environ., 99, 469−477.

Zhang, Y., Li, M. and Guo, Y. (2018), Preparation, characterization and photocatalytic activity of Ag/TiO2 nanoparticle semiconductor catalysts. IOP Conf. Ser.: Earth Environ. Sci., 108, 022022.

Zhong, J.B., Lu, Y., Jiang, W.D., Meng, Q.M., He, X.Y., Li, J.Z. and Chen, Y.Q. (2009), Characterization and photocatalytic property of Pd/TiO2 with the oxidation of gaseous benzene. J. Hazard. Mater., 168, 1632–1635.
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2019-6-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明