博碩士論文 106324033 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.146.107.152
姓名 林韋劭(Wei-Shao Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 將蝦紅素微膠囊化於多孔材料中之研究
相關論文
★ 在低溫下以四氯化鈦製備高濃度二氧化鈦結晶覆膜液★ 水熱法合成細顆粒鈦酸鋇
★ 合成均一粒徑球形二氧化鈦★ 共沉澱法合成細顆粒鈦酸鋇
★ 中孔型沸石的晶體形狀之研究★ 含釩或鎵金屬之中孔型分子篩的合成與鑑定
★ 奈米級二氧化鈦及鈦酸鋇之合成與鑑定★ 汽機車尾氣在富氧條件下NOx之去除
★ 耐高溫燃燒觸媒的配製及鑑定★ 高效率醋酸乙酯生產製程研究
★ 製備參數對水熱法製備球形奈米鈦酸鋇粉體之影響研究★ Au/FexOy 奈米材料之製備 及CO 氧化的應用
★ 非晶態奈米鐵之製備與催化性質研究★ 奈米含銀二氧化鈦光觸媒之製備與應用
★ 非晶形奈米鎳合金觸媒的製備及其 在對-氯硝基苯液相選擇性氫化反應之研究★ 奈米金/氧化鈰觸媒之製備及在氧化反應之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以活性碳、糊精、磷酸鹽類、改質澱粉、二氧化矽、SBA-15及MCM-41等多孔性物質作為蝦紅素的包覆材料,上述材料除了二氧化矽之外,其餘均具有疏水性及多孔性,疏水性可使蝦紅素分子被順利的吸入材料的孔洞之中,是選擇包覆材料的重要條件,而材料的孔隙度則影響可包覆的蝦紅素含量及包覆率,是判斷是否能實行並用於商業的重要考量因素之一。本研究中配置添加少量精鹽之pH 1.4鹽酸溶液作為胃酸模擬環境,並以pH 7.4之磷酸緩衝液作為小腸模擬環境,並將製備的複合粉末置於模擬環境中測試,在溶離試驗中磷酸鹽類、改質澱粉包覆的複合粉末在模擬腸胃的環境中均可良好的釋放出蝦紅素。本研究以紫外光-可見光近紅外光光譜儀作為主要分析儀器,將蝦紅素複合粉末溶於Dimethyl sulfoxide(DMSO)配置成樣品並量測吸光度,由樣品吸光度可推得蝦紅素含量並藉此計算出粉末對蝦紅素的包覆率,經實驗得知所選用之材料中二氧化矽的包覆率不佳,但磷酸鹽類、SBA-15、MCM-41以及改質澱粉對蝦紅素均具有良好的包覆效果。實驗結果顯示磷酸鹽類和改質澱粉能適用於蝦紅素的吸收且其複合粉末在人體內釋放蝦紅素的情況佳,用作蝦紅素包覆的材料有發展的潛力。
摘要(英) Abstract
In this study, several inorganic materials were chosen for the encapsulation of astaxanthin. The materials included activated carbon, phosphate, SBA-15, MCM-41 and aerosil. All of them are hydrophobic and porous, except silica. The hydrophobic property makes the materials easier to absorb the astaxanthin molecular. It is the major factor to choose them as the encapsulation agent. The porosity of the material affects the amount of astaxanthin absorbed by materials and encapsulation rate. Based on the absorption performance, one can decide whether the material can be applied to practical use or not. In this experiment, the astaxanthin composite powder was prepared and astaxanthin was encapsulated in the porous material. Astaxanthin in composite powder should be able to be released in human body. Hydrochloric acid solution with a trace of salt at pH value 1.4 and phosphate buffer solution with pH value 7.4 were used to simulate the performance of astaxanthin composite powder in stomach and small intestine. The dissolution results show that all kind of astaxanthin composite powder can release astaxanthin in human bodies and phosphate is the most efficient one. In this study, Ultraviolet–visible spectroscopy (UV/vis)‎ was used to analyze the samples. The composite powder was dissolved in Dimethyl sulfoxide and analyzed with UV/vis spectrophotometer. The amount of astaxanthin in composite powder was obtained by the absorbance of samples and the encapsulation rate was calculated. The experimental results show that the silica we use is not suitable for astaxanthin encapsulation due to its weak capability to absorb astaxanthin. Its encapsulation rate was low. Phosphate, MCM-41 and SBA-15 showed good performance in astaxanthin absorption. The results demonstrated that phosphate is the best one to adsorb astaxanthin and release it in human bodies among all materials. It has great potential in the encapsulation of astaxanthin.
關鍵字(中) ★ 還原蝦紅素
★ 微膠囊化
★ 多孔性材料
★ 多醣類
關鍵字(英) ★ astaxanthin
★ encapsulation
★ porous materials
★ polysaccharides
論文目次 摘要 i
Abstract ii
目錄 iv
表目錄 vii
圖目錄 viii
第一章 緒論 1
1.1 研究背景 1
1.1.1 市場簡介 3
1.1.2 蝦紅素簡介 5
1.1.3 含浸法簡介 7
1.2 研究動機 9
1.3 研究目的 9
第二章 文獻回顧 11
2.1 還原蝦紅素 11
2.1.1 還原蝦紅素之特性 11
2.1.2 還原蝦紅素之生產 12
2.1.3 還原蝦紅素對氧化傷害之防護 14
2.1.4 還原蝦紅素之安全性 17
2.2 自由基與活性氧 18
2.2.1 自由基簡介 18
2.2.2 自由基之危害 19
2.3 微膠囊化技術 20
2.3.1 微膠囊化技術簡介 20
2.3.2 微膠囊化方法 22
2.3.3 微膠囊之釋放機制 25
2.3.4 微膠囊包覆材料 25
2.3.5 羧甲基纖維素鈉(CMC-Na) 27
2.3.6 阿拉伯膠(Arabic gum) 28
2.4 多孔性材料 29
2.4.1 沸石與中孔洞材料 29
2.4.2 磷酸鹽類 35
第三章 實驗方法 37
3.1 實驗材料與藥品 38
3.1.1 還原蝦紅素油膏 38
3.1.2 多孔性材料 38
3.1.3 多醣類 40
3.1.2 其他溶劑 40
3.2 儀器介紹 41
3.3 還原蝦紅素之安定性測試 45
3.3.1 光安定性 43
3.3.2 熱安定性 44
3.4 蝦紅素複合顆粒製備 44
3.4.1 羧甲基纖維素鈉(CMC-Na)膠體之配置 44
3.4.2 SBA-15/羧甲基纖維素鈉蝦紅素複合顆粒 44
3.4.3活性碳之蝦紅素複合顆粒製備 45
3.4.4 二氧化矽/羧甲基纖維素鈉蝦紅素複合顆粒 46
3.4.5 MCM-41/羧甲基纖維素鈉蝦紅素複合顆粒 46
3.4.6 糊精/羧甲基纖維素鈉蝦紅素複合顆粒 47
3.4.7 磷酸鹽類/羧甲基纖維素鈉蝦紅素複合顆粒 48
3.4.8 改質澱粉/羧甲基纖維素鈉蝦紅素複合顆粒 49
3.4.9 阿拉伯膠溶液之配置 50
3.4.10 磷酸鹽類/阿拉伯膠蝦紅素複合顆粒 50
3.5 蝦紅素複合顆粒特性分析 51
3.5.1 蝦紅素複合顆粒包覆率量測 51
3.5.2 蝦紅素複合顆粒溶離試驗 53
3.5.3 複合顆粒熱安定測試 56
3.5.4 複合顆粒光安定測試 56
3.5.5 蝦紅素複合顆粒外觀觀測 57
3.5.6 穿透式電子顯微鏡(TEM) 57
3.5.7 X光粉末繞射儀(XRD) 58
第四章 結果與討論 59
4.1 還原蝦紅素之安定性測試 59
4.1.1光安定性 59
4.1.2 熱安定性 60
4.2 蝦紅素複合顆粒包覆結果 61
4.2.1 活性碳與糊精 61
4.2.2 中孔洞分子篩 63
4.2.3 二氧化矽 65
4.2.4 改質澱粉 66
4.2.5 磷酸鹽類 66
4.3 蝦紅素複合顆粒溶離試驗 67
4.3.1 蝦紅素複合顆粒於胃環境溶離測試 67
4.3.2 蝦紅素複合顆粒於小腸環境溶離測試 69
4.4 複合顆粒安定性測試 71
4.4.1 光安定測試 71
4.4.2 熱安定測試 74
4.5 蝦紅素複合顆粒特性分析 75
4.5.1 蝦紅素複合顆粒外觀觀測 75
4.5.2 穿透式電子顯微鏡 77
4.5.3 X光繞射儀 79
第五章 結論 81
參考資料 83
參考文獻 [1] Ministry of Health and Welfare (MOHW), “Taiwan’s Leading Causes of Death in 2017,” https://www.mohw.gov.tw/cp-16-33598-1.html (2018)
[2] 郭堉圻、郭蕙蘭、劉宇珊,蝦紅素的生理機轉及對慢性疾病之效應,運動研究,第26卷,第2期,33-42頁 (2017)
[3] 陳逸敬、張克亮,阿拉伯膠-β-環糊精-還原蝦紅素複合物之製備及安定性之探討,國立臺灣海洋大學食品科學系碩士論文 (2009)
[4] Global Burden of Disease Cancer Collaboration, “Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-Years for 29 Cancer Groups, 1990 to 2016: A Systematic Analysis for the Global Burden of Disease Study”, JAMA Oncol. 4, 1553-1568 (2018).
[5] R. R. Ambati,S. M. Phang, S. Ravi and R. G. Aswathanarayana, “Astaxanthin:Sources, extraction, stability, biologicalactivities and its commercial applications-A review”, Marine Drugs 12, 128-152 (2014).
[6] Research and markets, “Global Astaxanthin Market - Sources, Technologies and Application” (2015)
[7] J. J. Huang, Z. Yang, R. Y. Zhu, X. X. Qian, Y. Q. Wang, Y. Li and J. L. Li, “Efficient heterologous expression of an alkaline lipase and its application in hydrolytic production of free astaxanthin”, Biotechnology for Biofuels 11, 181 (2018).
[8] K. Shanmugapriya, H. J. Kim, P. S. Saravana, B. S. Chun and H. W. Kang, “Astaxanthin-alpha tocopherol nanoemulsion formulation by emulsification methods: Investigation on anticancer, wound healing, and antibacterial effects”, Colloids and Surfaces B: Biointerfaces 172, 170-179 (2018).
[9] T. Řezanka, L. Nedbalová, I. Kolouchová,K. Sigler, “LC–MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers”, Phytochemistry 88, 34-42 (2013).
[10] T. Zhou, X. F. Wang, Y. Ju, C. J. Shi and G. F. Kan, “Stability application and research of astaxanthin integrated into food”, IOP Conf. Series: Materials Science and Engineering 394 (2018).
[11] 吳建威、陳文君,行政院農業委員會水產試驗所,水試專訊,20期 (2007)
[12] A. Bernardos and L. Kouřimska, “Applications of mesoporous silica materials in food – a review”, Czech J. Food Sci. 31(2), 99-107 (2013).
[13] Z. Z. Feng, M. Y. Li, Y. T. Wang and M. J. Zhu, “Astaxanthin from Phaffia rhodozyma: Microencapsulation with carboxymethyl cellulose sodium and microcrystalline cellulose and effects of microencapsulated astaxanthin on yogurt properties”, LWT-Food Science and Technology 96, 152-160 (2018).
[14] S. Takeungwongtrakul and S. Benjakul, “Astaxanthin degradation and lipid oxidation of Pacifi white shrimp oil: kinetics study and stability as affected by storage conditions”, Int. Aquat. Res. 8, 15–27 (2016).
[15] G. L. Jiang and M. J. Zhu, “Preparation of astaxanthin-encapsulated complex with zein and oligochitosan and its application in food processing”, LWT-Food Science and Technology 106, 179-185 (2019).
[16] C. Niamnuy, S. Devahastin, S. Soponronnarit, G.S. Vijaya Raghavan, “Kinetics of astaxanthin degradation and color changes of dried shrimp during storage”, Journal of Food Engineering 87(4), 591-600 (2008).
[17] G. F. Shu, N. Khalid, Z. Chen, M. A. Neves, C. J. Barrow and M. Nakajima, “Formulation and characterization of astaxanthin-enriched nanoemulsions stabilized using ginseng saponins as natural emulsifiers”, Food Chemistry 255, 67-74 (2018).
[18] Oryza Oil & Fat Chemical Co., Ltd., “Natural Antioxidant for Neuro-protection, Vision Enhancement & Skin Rejuvenation” (2006)
[19] 賴淩峰、夏書芹、于靜洋等,明膠/羧甲基纖維素鈉複合凝聚物的製備及性質研究[EB/OL] 北京:中國科技論文線上 (2017)
[20] D. Marín-Peñalver, A. Alemán, M. C. Gómez-Guillén and P. Montero, “Carboxymethyl cellulose films containing nanoliposomes loaded with an angiotensin-converting enzyme inhibitory collagen hydrolysate”, Food Hydrocolloids 94, 553-560 (2019).
[21] X. X. Zhao, J. Hu, X. Q. Zhang, X. Q. Li, X. J. Leng, S.L. Wu and D. Cheng, “Effects of E/Z Isomers and Coating Materials of Astaxanthin Products on the Pigmentation and Antioxidation of Rainbow Trout, Oncorhynchus mykiss” J. World Aquaculture Soc. 47, 341-351 (2016).
[22] M. M. M. Affandi, T. Julianto, A. Majeeda, “Development and stability evaluation of Astaxanthin nanoemulsion”, Asian J. of Pharmaceutical and Clinical Research 4, 143-148 (2011).
[23] R. C. Hwang and G. R. Peck, “A Systematic Evaluation of the Compression and Tablet Characteristics of Various Types of Lactose and Dibasic Calcium Phosphate”, Pharmaceutical Technol 25, 54-68 (2011).
[24] V. M. Rao, K. Engha and Y. H. Qiu, “Design of pH-independent controlled release matrix tablets for acidic drugs”, International J. Pharmaceutics 252, 81–86 (2003).
[25] A. Sanches‐Silva, T. Ribeiro, T. G. Albuquerque, P. Paseiro, R. Sendón et al., “Ultra‐high pressure LC for astaxanthin determination in shrimp by‐products and active food packaging.” Biomed. Chromatogr. 27, 757-764 (2013).
[26] T. F. Parangi, R. M. Patel and U. V. Chudasama, “Synthesis and characterization of mesoporous Si-MCM-41 materials and their application as solid acid catalysts in some esterification reactions” Bull. Mater. Sci. 37, 609-615 (2014).
[27] M. Manzanoa, V. Aina, C.O. Are´an, F. Balas, V. Cauda, M. Colilla, M.R. Delgado, M. Vallet-Reg´, “Studies on MCM-41 mesoporous silica for drug delivery: Effect of particle morphology and amine functionalization” Chem. Eng. J. 137, 30–37 (2008).
[28] S. Jana, B. Dutta, H. Honda and S. Koner, “Mesoporous silica MCM-41 with rod-shaped morphology: Synthesis and characterization” Appl. Clay Sci. 54, 138–143 (2011).
[29] N. Ž. Knežević and J. O. Durand, “Large Pore Mesoporous Silica Nanomaterials for Application in Delivery of Biomolecules” Nanoscale 7, 2199-2209 (2015).
[30] S. K. Natarajan and S. Selvaraj, “Mesoporous silica nanoparticles: importance of surface modifications and its role in drug delivery”, RSC. Adv. 4, 14328-14334 (2014).
[31] R. Narayan, U. Y. Nayak, A. M. Raichur and S. Garg, “Mesoporous Silica Nanoparticles: A Comprehensive Review on Synthesis and Recent Advances”, Pharmaceutics 10, 118 (2018).
[32] Z. Chen, G. Shu, N. Taarji, C. J. Barrow, M. Nakajima, N. Khalid and M. A. Neves, “Gypenosides as natural emulsifiers for oil-in-water nanoemulsions loaded with astaxanthin: Insights of formulation, stability and release properties”, Food Chemistry 261, 322-328 (2018).
[33] L. Pan, H. Wang and K. Gu, “Nanoliposomes as Vehicles for Astaxanthin: Characterization, In Vitro Release Evaluation and Structure” Molecules 23, 2822 (2018).
[34] F. J. Pashkow, D. G. Watumull and C. L. Campbell, “Astaxanthin: A Novel Potential Treatment for Oxidative Stress and Inflammation in Cardiovascular Disease”, American Journal of Cardiology 101, 58-68 (2008).
[35] C. Alarcón-Alarcón, M. Inostroza-Riquelme, Cé. Torres-Gallegos, C. Araya, M. Miranda, J.C. Sánchez-Caamaño, I. Moreno-Villoslada, F. A. Oyarzun-Ampuero, “Protection of astaxanthin from photodegradation by its inclusion in hierarchically assembled nano and microstructures with potential as food”, Food Hydrocolloids 83, 36-44 (2018).
[36] J. Wardrop, D. Law, Y. Qiu, K. Engh, L. Faitsch and C. Ling, “Influence of Solid Phase and Formulation Processing on Stability of Abbott-232 Tablet Formulations”, J. Pharmaceutical Sci. 95, 2380-2392
[37] S. H. Wu, C. Y. Mou and H. P. Lin, “Synthesis of mesoporous silica nanoparticles”, Chem. Soc. Rev. 42, 3862-3875 (2013).
[38] J. Bowen, C. Soutar, R. D. Serwata, S. Lagocki, D. A. White, S. J. Davies and A. J. Young, “Utilization of (3S,3’S)-astaxanthin acyl esters in pigmentation of rainbow trout (Oncorhynchus mykiss)”, Aquaculture Nutrition 8, 59-68 (2002).
[39] 李文智、白曛綾,以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究,國立交通大學環境工程研究所碩士論文 (2006)
[40] A. El-Agamey, G. M. Lowe, D. J. McGarvey, A. Mortensen, D. M. Phillip, T. G. Truscott and A. J. Young, “Carotenoid radical chemistry and antioxidant/pro-oxidant properties”, Archives of Biochem. Biophys. 430, 37–48 (2004).
[41] A. C. Bertolini, A. C. Siani and C. R. F. Grosso, “Stability of Monoterpenes Encapsulated in Gum Arabic by Spray-Drying”, J. Agric. Food Chem. 49, 780-785 (2001).
[42] I. Niizawa, B. Y. Espinaco, S. E. Zorrilla, G. A. Sihufe , “Natural astaxanthin encapsulation: Use of response surface methodology for the design of alginate beads”, International J. Biological Macromolecules 121, 601-608 (2019).
[43] P. Astorg, “Food carotenoids and cancer prevention: An overview of current research”, Trends in Food Sci. Techno. 8(12), 406-413 (1997).
[44] A. L. Focsan, N. E. Polyakov and L. D. Kispert, “Photo Protection of Haematococcus pluvialis Algae by Astaxanthin: Unique Properties of Astaxanthin Deduced by EPR, Optical and Electrochemical Studies”, Antioxidants 6, 80 (2017).
指導教授 陳郁文(Yu-Wen Chen) 審核日期 2019-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明