博碩士論文 106324603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.135.195.91
姓名 杜伊藍(Dewi Wulandari)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 以溶劑蒸氣退火法製備雙親嵌段共聚物之二元摻合物薄膜的結構演變
(Structural Evolution of Binary Blends of Amphiphilic Block Copolymers in Thin Film by Solvent Vapor Annealing)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 嵌段共聚物(Block copolymers)的自組裝特性可實現數十至數百奈米範圍內各種多樣形態的能力,而引起了極大的關注。其中調控薄膜中自組裝奈米微結構(nanodomain)的尺寸大小對於未來應用至關重要。在本研究中,嵌段共聚物溶解在選擇性溶劑中,形成具有核-殼結構的球形微胞,其中不溶性之嵌段傾向於形成核,而可溶性嵌段則優先形成殼。薄膜透過旋轉塗佈法(spin coating)製備而成。然後,將樣品在選擇性溶劑(丙酮)或中性溶劑(氯仿)的蒸氣中進行退火,使其從微胞至垂直取向的奈米微結構之結構演變。透過原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM)及低掠角小角度X光散射儀(GISAXS)對以不同溶劑蒸氣進行退火的聚苯乙烯-聚(2-乙烯基吡啶)(polystyrene-block-poly(2-vinyl pyridine), PS-b-P2VP)二嵌段共聚物的二元摻合物之自組裝特性和結構演變進行研究。結果證實,摻合兩種具有不同聚合度的嵌段共聚物可以控制薄膜中奈米微結構的大小。尤其在域間間距(inter-domain spacing)對於不同的溶劑種類觀察到相應的變化,且與暴露於不同的溶劑蒸氣下的二元混合物的薄膜之混合比例也有相異的依存性。這種方法容易使奈米微結構具有尺寸可調性以及形態多樣性。
摘要(英) Self-assembled of block copolymers (BCPs) have aroused great attention due to their ability to achieve diverse morphologies in the range of tens to hundreds of nanometer. Tailoring the dimension of self-assembled nanodomains in a thin film is essential for future applications. In this study, block copolymers were dissolved in a selective solvent, to form spherical micelles with a core-shell structure, in which the insoluble block formed the cores whereas the soluble block preferentially formed the shell. Thin micellar films were prepared by spin-coating. Then the as-spun specimens were annealed in a vapor of a selective (acetone) or neutral (chloroform) solvent to bring about the structural evolution from micelles to perpendicularly-oriented nanodomains. The self-assembly and structural evolution of binary blends of polystyrene-block-poly(2-vinyl pyridine) (PS-b-P2VP) diblock copolymers with various solvents were studied by atomic force microscopy (AFM), scanning electron microscopy (SEM), and grazing incident small-angle X-ray scattering (GISAXS). The results demonstrated that blending two block copolymers with different degrees of polymerization could control the domain size. In particular, the inter-domain distance varied in response to different solvent quality and behaved with different dependence of the blend ratios in thin films of binary mixtures under different solvent vapor. This approach easily allows nanodomains with size-tunability and morphological diversity.
關鍵字(中) ★ 自組裝嵌段共聚物
★ 二元摻合物
★ 溶劑退火
關鍵字(英) ★ Self-assembly block copolymer
★ binary blends
★ solvent annealing
論文目次 Abstract i
中文摘要 ii
Acknowledgements iii
Table of Contents iv
List of Figures vi
List of Tables xiii
CHAPTER I. INTRODUCTION 1
CHAPTER II . LITERATURE REVIEW 3
2.1 Introduction to Block Copolymers 3
2.2 The Phase Behavior of Block Copolymers 4
2.2.1 Macrophase and Microphase Separations of Block Copolymers 4
2.2.2 The Morphology of Block Copolymers in Bulk 5
2.3 Self-Assembly Block Copolymer 11
2.3.1 Principal of Micelle Formation: Critical Micelle Concentration 11
2.3.2 Deposition Process of Block Copolymer in Thin Films 13
2.4 Surface Wettability of Block Copolymer Thin Films 14
2.5 Inducing High Order Nanostructure of Block Copolymer 19
2.5.1 Thermal Annealing 19
2.5.2 Solvent Annealing 20
2.6 Blendings of Block Copolymer 28
CHAPTER III. EXPERIMENTAL METHODS 34
3.1 Materials 34
3.2 Instruments 35
3.3 Sample Preparation 35
3.4 Instrumental Analysis 38
3.4.1 Optical Microscopy (OM) 38
3.4.2 Atomic Force Microscopy (AFM) 38
3.4.3 Scanning Electron Microscopy (SEM) 40
3.4.4 Grazing Incident Small Angle X-Ray Scattering (GISAXS) 41
CHAPTER IV. RESULTS AND DISCUSSION 43
4.1 Thermal Annealing 44
4.2 Micelle Formation 48
4.3 Inducing High Order Nanostructure by Solvent Vapor Annealing 53
4.4 Domain Orientation of Block Copolymer Nanodomain 59
4.5 Microdomain Periodicity of Pure and Blending Systems 62
CHAPTER V. CONCLUSION 78
REFERENCES 79
APPENDIX 87
參考文獻 (1) Edrington, B. A. C.; Urbas, A. M.; Derege, P.; Chen, C. X.; Swager, T. M.; Hadjichristidis, N.; Xenidou, M.; Fetters, L. J.; Joannopoulos, J. D.; Fink, Y.; et al. Polymer-Based Photonic Crystals. 2001, No. 6, 421–425.
(2) Metz, S. J.; Mulder, M. H. V.; Wessling, M. Gas-Permeation Properties of Poly(Ethylene Oxide) Poly(Butylene Terephthalate) Block Copolymers. Macromolecules 2004, 37 (12), 4590–4597.
(3) Liu, J.; Zhang, Q.; Remsen, E. E.; Wooley, K. L. Nanostructured Materials Designed for Cell Binding and Transduction. Biomacromolecules 2001, 2 (2), 362–368.
(4) Gu, X.; Gunkel, I.; Hexemer, A.; Russell, T. P. Controlling Domain Spacing and Grain Size in Cylindrical Block Copolymer Thin Films by Means of Thermal and Solvent Vapor Annealing. Macromolecules 2016, 49 (9), 3373–3381.
(5) Mansky, P.; haikin, P.; Thomas, E. L. Monolayer Films of Diblock Copolymer Microdomains for Nanolithographic Applications. J. Mater. Sci. 1995, 30 (8), 1987–1992.
(6) Sivaniah, E.; Matsubara, S.; Zhao, Y.; Hashimoto, T.; Fukunaga, K.; Kramer, E. J.; Mates, T. E. Symmetric Diblock Copolymer Thin Films on Rough Substrates: Microdomain Periodicity in Pure and Blended Films. Macromolecules 2008, 41 (7), 2584–2592.
(7) Lo, C. T.; Chou, P. W. Effect of Molecular Properties of Random Copolymers on the Stability and Domain Dimension of Block Copolymer/Random Copolymer Blends. J. Phys. Chem. B 2014, 118 (44), 12763–12771.
(8) Williamson, L. D.; Nealey, P. F. Macrophase Separation of Blends of Diblock Copolymers in Thin Films. Macromolecules 2015, 48 (12), 3997–4003.
(9) Cowie, J. M. G. Block Copolymers and Graft Copolymers. In Comprehensive Polymer Science and Supplements; University of Stirling, 1989; pp 33–42.
(10) Zhang, M.; June, S. M.; Long, T. E. Principles of Step-Growth Polymerization (Polycondensation and Polyaddition); Elsevier B.V., 2012; Vol. 5.
(11) Mai, Y.; Eisenberg, A. Self-Assembly of Block Copolymers. Chem. Soc. Rev. 2012, 41 (18), 5969–5985.
(12) Bates, F. S.; Fredrickson, G. H. Block Copolymers-Designer Soft Materials. Phys. Today 1999, 52 (2), 32–38.
(13) Leibler, L. Theory of Microphase Separation in Block Copolymers. Macromolecules 1980, 13 (6), 1602–1617.
(14) Gunkel, I.; Stepanow, S.; Thurn-Albrecht, T.; Trimper, S. Fluctuation Effects in the Theory of Microphase Separation of Diblock Copolymers in the Presence of an Electric Field. Macromolecules 2007, 40 (6), 2186–2191.
(15) Glaser, J.; Medapuram, P.; Beardsley, T. M.; Matsen, M. W.; Morse, D. C. Universality of Block Copolymer Melts. Phys. Rev. Lett. 2014, 113 (6).
(16) Beardsley, T. M.; Matsen, M. W. Universality between Experiment and Simulation of a Diblock Copolymer Melt. Phys. Rev. Lett. 2016, 117 (21), 1–5.
(17) Sakamoto, N.; Hashimoto, T. Order-Disorder Transition of Low Molecular Weight Polystyrene-Block-Polyisoprene. 1. SAXS Analysis of Two Characteristic Temperatures. Macromolecules 1995, 28 (20), 6825–6834.
(18) Matsen, M. W.; Schick, M. Microphase Separation in Starblock Copolymer Melts. Macromolecules 1994, 27 (23), 6761–6767.
(19) Matsen, M. W.; Bates, F. S. Unifying Weak- and Strong-Segregation Block Copolymer Theories. Macromolecules 1996, 29 (4), 1091–1098.
(20) Fredrickson, G. H.; Helfand, E. Fluctuation Effects in the Theory of Microphase Separation in Block Copolymers. J. Chem. Phys. 1987, 87 (1), 697–705.
(21) Papadakis, C. M.; Almdal, K.; Mortensen, K.; Posselt, D. Identification of an Intermediate-Segregation Regime in a Diblock Copolymer System. Europhys. Lett. 1996, 36 (4), 289–294.
(22) Hadziioannou, G.; Skoulios, A.; Hadziioannou, G. Molecular Weight Dependence of Lamellar Structure in Styrene/Isoprene Two- and Three-Block Copolymers. Macromolecules 1982, 15 (2), 258–262.
(23) Almdal, K.; Rosedale, J. H.; Bates, F. S.; Wignall, G. D.; Fredrickson, G. H. Gaussian- to Stretched-Coil Transition in Block Copolymer Melts. Phys. Rev. Lett. 1990, 65 (9), 1112–1115.
(24) Hashimoto, T.; Mori, K.; Hasegawa, H. Order–Disorder Transition of Polystyrene-Block-Polyisoprene Part II. Characteristic Length as a Function of Polymer Concentration, Molecular Weight, Copolymer Composition, and χ Parameter. Polymer (Guildf). 2001, 42 (7), 3009–3021.
(25) Riess, G. Micellization of Block Copolymers. Prog. Polym. Sci. 2003, 28 (7), 1107–1170.
(26) Quemener, D; Deratani, A; Lecommandaux, S. Encyclopedia of Signaling Molecules , 2nd Edition Sangdun Choi ( Ed ) Guidelines for Authors Encyclopedia of Signaling Molecules , 2nd Edition Sangdun Choi ( Ed ) Guidelines for Authors. Top Curr Chem 2012, No. October 2011, 2–4.
(27) Israelachvili, J. N. Intermolecular and Surface Forces; Elsivier, 2002.
(28) Blanazs, A.; Armes, S. P.; Ryan, A. J. Self-Assembled Block Copolymer Aggregates: From Micelles to Vesicles and Their Biological Applications. Macromol. Rapid Commun. 2009, 30 (4–5), 267–277.

(29) Yoshida, H.; Takenaka, M. Physics of Block Copolymers from Bulk to Thin Films; Elsevier Ltd., 2015.
(30) Kim, S.; Bates, C. M.; Thio, A.; Cushen, J. D.; Ellison, C. J.; Willson, C. G.; Bates, F. S. Consequences of Surface Neutralization in Diblock Copolymer Thin Films. ACS Nano 2013, 7 (11), 9905–9919.
(31) Maher, M. J.; Self, J. L.; Stasiak, P.; Blachut, G.; Ellison, C. J.; Matsen, M. W.; Bates, C. M.; Willson, C. G. Structure, Stability, and Reorganization of 0.5 L0 Topography in Block Copolymer Thin Films. ACS Nano 2016, 10 (11), 10152–10160.
(32) Smith, A. P.; Douglas, J. F.; Meredith, J. C.; Amis, E. J.; Karim, A. Combinatorial Study of Surface Pattern Formation in Thin Block Copolymer Films. Phys. Rev. Lett. 2001, 87 (1), 4–7.
(33) Soultati, A.; Douvas, A. M.; Georgiadou, D. G.; Palilis, L. C.; Bein, T.; Feckl, J. M.; Gardelis, S.; Fakis, M.; Kennou, S.; Falaras, P.; et al. Solution-Processed Hydrogen Molybdenum Bronzes as Highly Conductive Anode Interlayers in Efficient Organic Photovoltaics. Adv. Energy Mater. 2014, 4 (3), 1–10.
(34) Lin, Z. Q.; Kim, D. H.; Wu, X. D.; Boosahda, L.; Stone, D.; LaRose, L.; Russell, T. P. A Rapid Route to Arrays of Nanostructures in Thin Films. Adv. Mater. 2002, 14 (19), 1373–1376.
(35) Cavicchi, K. A.; Berthiaume, K. J.; Russell, T. P. Solvent Annealing Thin Films of Poly(Isoprene-b-Lactide). Polymer (Guildf). 2005, 46 (25), 11635–11639.
(36) Knoll, A.; Horvat, A.; Lyakhova, K. S.; Krausch, G.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming Block Copolymers. Phys. Rev. Lett. 2002, 89 (3), 355011–355014.

(37) Horvat, A.; Lyakhova, K. S.; Sevink, G. J. A.; Zvelindovsky, A. V.; Magerle, R. Phase Behavior in Thin Films of Cylinder-Forming ABA Block Copolymers: Mesoscale Modeling. J. Chem. Phys. 2004, 120 (2), 1117–1126.
(38) Cavicchi, K. A.; Russell, T. P. Solvent Annealed Thin Films of Asymmetric Polyisoprene - Polylactide Diblock Copolymers. Macromolecules. 2007, pp 1181–1186.
(39) Shamsudin, S. A.; Mikihito, T.; Hirokazu, H. Controlling Ordered Structures of PS-b-P2VP Block Copolymer Thin Film by Tuning Solvent Evaporation Rate. Macromol. Symp. 2017, 371 (1), 75–83.
(40) Sinturel, C.; Vayer, M.; Morris, M.; Hillmyer, M. A. Solvent Vapor Annealing of Block Polymer Thin Films. Macromolecules 2013, 46 (14), 5399–5415.
(41) Gu, X.; Gunkel, I.; Hexemer, A.; Gu, W.; Russell, T. P. An in Situ Grazing Incidence X-Ray Scattering Study of Block Copolymer Thin Films during Solvent Vapor Annealing. Adv. Mater. 2014, 26 (2), 273–281.
(42) Shamsudin, S. A. B.; Sakaguchi, G.; Takenaka, M.; Hasegawa, H. Influence of Temperature and Type of Solvents on the Microdomain Orientation of PS-b-P2VP Ultrathin Films by Solvent Annealing. Macromol. Symp. 2013, 327 (1), 72–79.
(43) Sun, Y. Sen; Huang, W. H.; Lin, C. F.; Cheng, S. L. Tailoring Carbon Nanostructure with Diverse and Tunable Morphology by the Pyrolysis of Self-Assembled Lamellar Nanodomains of a Block Copolymer. Langmuir 2017, 33 (8), 2003–2010.
(44) Yu, X.; Peng, J.; Cui, L.; Wang, H.; Li, B.; Han, Y. Morphology Development of Ultrathin Symmetric Diblock Copolymer Film via Solvent Vapor Treatment. Macromolecules 2004, 37 (19), 7301–7307.

(45) Gowd, E. B.; Böhme, M.; Stamm, M. In Situ GISAXS Study on Solvent Vapour Induced Orientation Switching in PS- b -P4VP Block Copolymer Thin Films . IOP Conf. Ser. Mater. Sci. Eng. 2010, 14, 012015.
(46) Zettl, U.; Knoll, A.; Tsarkova, L. Effect of Confinement on the Mesoscale and Macroscopic Swelling of Thin Block Copolymer Films. Langmuir 2010, 26 (9), 6610–6617.
(47) Radjabian, M.; Abetz, C.; Fischer, B.; Meyer, A.; Lademann, B.; Abetz, V. Structure Formation of Binary Blends of Amphiphilic Block Copolymers in Solution and in Bulk. Macromol. Chem. Phys. 2017, 218 (13).
(48) Radjabian, M.; Abetz, V. Tailored Pore Sizes in Integral Asymmetric Membranes Formed by Blends of Block Copolymers. Adv. Mater. 2015, 27 (2), 352–355.
(49) Rodríguez-Hernández, J. Nano/Micro and Hierarchical Structured Surfaces in Polymer Blends; Elsivier, 2013.
(50) Stuen, Karl O; Thomas, Carla S; Liu, Guoliang; Ferrier, Nicola; Nealey, P. F. Dimensional Scaling of Cylinders in Thin Films of Block Copolymer−Homopolymer Ternary Blends. Macromolecules 2009, 42 (14), 5139–5245.
(51) Nagpal, U.; Kang, H.; Craig, G. S. W.; Nealey, P. F.; De Pablo, J. J. Pattern Dimensions and Feature Shapes of Ternary Blends of Block Copolymer and Low Molecular Weight Homopolymers Directed to Assemble on Chemically Nanopatterned Surfaces. ACS Nano 2011, 5 (7), 5673–5682.
(52) Zhang, X.; Murphy, J. N.; Wu, N. L. Y.; Harris, K. D.; Buriak, J. M. Rapid Assembly of Nanolines with Precisely Controlled Spacing from Binary Blends of Block Copolymers. Macromolecules 2011, 44 (24), 9752–9757.


(53) Yager, K. G.; Lai, E.; Black, C. T. Self-Assembled Phases of Block Copolymer Blend Thin Films. ACS Nano 2014, 8 (10), 10582–10588.
(54) Hashimoto, T. Generalized View of Molecular Weight Dependence of Microdomain Size of Block Polymers. Appraisal of Hadziioannou-Skoulios’ Data on Binary Mixtures of Block Polymers. Macromolecules 1982, 15 (6), 1548–1553.
(55) Zhulina, E. B.; Birshtein, T. M. Theory of Supermolecular Structures in Polydisperse Block Copolymers: 2. Lamellar Superstructure Consisting of Two-Block Copolymers. Polymer (Guildf). 1991, 32 (7), 1299–1308.
(56) Spontak, R. J. Self-Consistent Field Theory of Ordered Block Copolymer Blends. 1. (AB)α/(AB)β Blends. Macromolecules 1994, 27 (22), 6363–6370.
(57) Matsen, M. W. Immiscibility of Large and Small Symmetric Diblock Copolymers. Am. Inst. Phys. 1995, 103, 3268–3271.
(58) Vu, T.; Mahadevapuram, N.; Perera, G. M.; Stein, G. E. Controlling Domain Orientations in Thin Films of AB and ABA Block Copolymers. Macromolecules 2011, 44 (15), 6121–6127.
(59) Sun, Y. Sen; Chien, S. W.; Wu, P. J. Effects of Film Instability on Roughness Correlation and Nanodomain Ordering in Ultrathin Films of Asymmetric Block Copolymers. Macromolecules 2010, 43 (11), 5016–5023.
(60) Liou, J.; Sun, Y. Monolayers of Diblock Copolymer Micelles by Spin-Coating from o-Xylene on SiO. Macromolecules 2012, 45, 1963–1871.
(61) Sun, Y. Sen; Huang, W. H.; Liou, J. Y.; Lu, Y. H.; Shih, K. C.; Lin, C. F.; Cheng, S. L. Conversion from Self-Assembled Block Copolymer Nanodomains to Carbon Nanostructures with Well-Defined Morphology. RSC Adv. 2015, 5 (128), 105774–105784.

(62) Yin, J.; Yao, X.; Liou, J. Y.; Sun, W.; Sun, Y. Sen; Wang, Y. Membranes with Highly Ordered Straight Nanopores by Selective Swelling of Fast Perpendicularly Aligned Block Copolymers. ACS Nano 2013, 7 (11), 9961–9974.
(63) Huang, W.; Chen, P.; Tung, S. Effects of Annealing Solvents on the Morphology of Block Copolymer-Based Supramolecular Thin Films. Macromolecules 2012, 45, 1562–1569.
(64) Hashimoto, T.; Yamasaki, K.; Koizumi, S. Ordered Structure in Blends of Block Copolymers . 1. Miscibility Criterion for Lamellar Block Copolymer. Macromolecules 1993, 26, 2895–2904.
(65) Dai, K. H.; Kramer, E. J. Determining the Temperature-Dependent Flow Interaction Parameter for Strongly Immiscible Polymers from Block Copolymer Segregation Measurements. Polymer (Guildf). 1994, 35 (1), 157–161.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明