參考文獻 |
[1]. Michel Perrut, “Supercritical fluid applications: industrial developments and economic issues”. Ind. Eng. Chem. Res, Vol 39, pp. 4531-4535, 2000.
[2]. X. X. Zhang, S. Heinonen, and E. Levanen, “Applications of supercritical carbon dioxide in materials processing and synthesis”. RSC Adv., Vol 4, pp. 61137-61152, 2014.
[3]. Larry T. Taylor, “Supercritical fluid chromatography for the 21st century”. J. Supercrit. Fluids, Vol 47, pp. 566-573, 2009.
[4]. Jennifer Jung and Michel Perrut, “Particle design using supercritical fluids: literature and patent survey”. J. Supercrit. Fluids, Vol 20, pp. 179-219, 2001.
[5]. T. Abou Elmaaty and E. Abd El-Aziz, “Supercritical carbon dioxide as a green media in textile dyeing: A review”. Text. Res. J., Vol 88, pp. 1184-1212, 2018.
[6]. M. Liu, et al., “Eco-friendly curcumin-based dyes for supercritical carbon dioxide natural fabric dyeing”. J. Clean Prod., Vol 197, pp. 1262-1267, 2018.
[7]. Josef Chrastil, “Solubility of solids and liquids in supercritical gases”. J. Phys. Chem., Vol 86, pp. 3016-3021, 1982.
[8]. J. Mendez-Santiago and A. S. Teja, “The solubility of solids in supercritical fluids”. Fluid Phase Equilib., Vol 158, pp. 501-510, 1999.
[9]. F. Gharagheizi, et al., “Artificial neural network modeling of solubilities of 21 commonly used industrial solid compounds in supercritical carbon dioxide”. Ind. Eng. Chem. Res, Vol 50, pp. 221-226, 2011.
[10]. A. A. el Hadj, et al., “Novel approach for estimating solubility of solid drugs in supercritical carbon dioxide and critical properties using direct and inverse artificial neural network (ANN)”. Neural Comput. Appl., Vol 28, pp. 87-99, 2017.
[11]. Ding-Yu Peng and Donald B. Robinson, “A new two-constant equation of state”. Ind. Eng. Chem. Fundam., Vol 15, pp. 59-64, 1976.
[12]. Giorgio Soave, “Equilibrium constants from a modified Redlich-Kwong equation of state”. Chem. Eng. Sci., Vol 27, pp. 1197-1203, 1972.
[13]. C. C. Huang, et al., “Calculation of the solid solubilities in supercritical carbon dioxide using a modified mixing model”. Fluid Phase Equilib., Vol 179, pp. 67-84, 2001.
[14]. M. Yazdizadeh, A. Eslamimanesh, and F. Esmaeilzadeh, “Thermodynamic modeling of solubilities of various solid compounds in supercritical carbon dioxide: Effects of equations of state and mixing rules”. J. Supercrit. Fluids, Vol 55, pp. 861-875, 2011.
[15]. Chongli Zhong and Hongyu Yang, “Representation of the solubility of solids in supercritical fluids using the SAFT equation of state”. Ind. Eng. Chem. Res, Vol 41, pp. 4899-4905, 2002.
[16]. Jens Ahlers, Tomohiko Yamaguchi, and Jürgen Gmehling, “Development of a universal group contribution equation of state. 5. prediction of the solubility of high-boiling compounds in supercritical gases with the group contribution equation of state volume-translated Peng−Robinson”. Ind. Eng. Chem. Res, Vol 43, pp. 6569-6576, 2004.
[17]. C. S. Su, “Prediction of solubilities of solid solutes in carbon dioxide-expanded organic solvents using the predictive Soave-Redlich-Kwong (PSRK) equation of state”. Chem. Eng. Res. Des., Vol 91, pp. 1163-1169, 2013.
[18]. L. H. Wang and S. T. Lin, “A predictive method for the solubility of drug in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 85, pp. 81-88, 2014.
[19]. Y. S. Ting and C. M. Hsieh, “Prediction of solid solute solubility in supercritical carbon dioxide with organic cosolvents from the PR plus COSMOSAC equation of state”. Fluid Phase Equilib., Vol 431, pp. 48-57, 2017.
[20]. Ireneo Kikic, Michele Lora, and Alberto Bertucco, “A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS)”. Ind. Eng. Chem. Res, Vol 36, pp. 5507-5515, 1997.
[21]. Shiang-Tai Lin, Chieh-Ming Hsieh, and Ming-Tsung Lee, “Solvation and chemical engineering thermodynamics”. J. Chin. Inst. Chem. Eng., Vol 38, pp. 467-476, 2007.
[22]. C. M. Hsieh and S. T. Lin, “Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations”. Aiche J., Vol 54, pp. 2174-2181, 2008.
[23]. Chieh-Ming Hsieh and Shiang-Tai Lin, “First-principles predictions of vapor−liquid equilibria for pure and mixture fluids from the combined use of cubic equations of state and solvation calculations”. Ind. Eng. Chem. Res, Vol 48, pp. 3197-3205, 2009.
[24]. C. M. Hsieh and S. T. Lin, “Prediction of liquid-liquid equilibrium from the Peng-Robinson plus COSMOSAC equation of state”. Chem. Eng. Sci., Vol 65, pp. 1955-1963, 2010.
[25]. L. H. Wang, C. M. Hsieh, and S. T. Lin, “Improved prediction of vapor pressure for pure liquids and solids from the PR plus COSMOSAC equation of state”. Ind. Eng. Chem. Res, Vol 54, pp. 10115-10125, 2015.
[26]. C. M. Hsieh and S. T. Lin, “Prediction of 1-octanol-water partition coefficient and infinite dilution activity coefficient in water from the PR plus COSMOSAC model”. Fluid Phase Equilib., Vol 285, pp. 8-14, 2009.
[27]. C. M. Hsieh and S. T. Lin, “First-principles prediction of phase equilibria using the PR plus COSMOSAC equation of state”. Asia-Pac. J. Chem. Eng., Vol 7, pp. S1-S10, 2012.
[28]. C. Y. Chen, et al., “Prediction of solid-liquid-gas equilibrium for binary mixtures of carbon dioxide plus organic compounds from approaches based on the COSMO-SAC model”. J. Supercrit. Fluids, Vol 133, pp. 318-329, 2018.
[29]. Hsin-Hao Liang, et al., “Improvement to PR+COSMOSAC EOS for predicting the vapor pressure of nonelectrolyte organic solids and liquids”. Ind. Eng. Chem. Res, Vol 58, pp. 5030-5040, 2019.
[30]. M. J. Frisch, et al., "Gaussian 09 Rev. B.01". Wallingford, CT, 2009.
[31]. E. Mullins, et al., “Sigma-profile database for using COSMO-based thermodynamic methods”. Ind. Eng. Chem. Res, Vol 45, pp. 4389-4415, 2006.
[32]. E. Mullins, et al., “Sigma profile database for predicting solid solubility in pure and mixed solvent mixtures for organic pharmacological compounds with COSMO-based thermodynamic methods”. Ind. Eng. Chem. Res, Vol 47, pp. 1707-1725, 2008.
[33]. VT-database. https://www.design.che.vt.edu/VT-Databases.html.
[34]. "DMol3". Accelrys Inc., San Diego, CA, 1999.
[35]. T. Holderbaum and J. Gmehling, “PSRK - A group contribution equation of state based on UNIFAC”. Fluid Phase Equilib., Vol 70, pp. 251-265, 1991.
[36]. Dortmund Data Bank. www.ddbst.com.
[37]. K. Fischer and J. Gmehling, “Further development, status and results of the PSRK method for the prediction of vapor-liquid equilibria and gas solubilities”. Fluid Phase Equilib., Vol 121, pp. 185-206, 1996.
[38]. J. Gmehling, J. D. Li, and K. Fischer, “Further development of the PSRK model for the prediction of gas solubilities and vapor-liquid-equilibria at low and high pressures II”. Fluid Phase Equilib., Vol 141, pp. 113-127, 1997.
[39]. S. Horstmann, K. Fischer, and J. Gmehling, “PSRK group contribution equation of state: revision and extension III”. Fluid Phase Equilib., Vol 167, pp. 173-186, 2000.
[40]. S. Horstmann, et al., “PSRK group contribution equation of state: comprehensive revision and extension IV, including critical constants and alpha-function parameters for 1000 components”. Fluid Phase Equilib., Vol 227, pp. 157-164, 2005.
[41]. K. G. Joback and R. C. Reid, “Estimation of pure-component properties from group-contributions ”. Chem. Eng. Commun., Vol 57, pp. 233-243, 1987.
[42]. L. Constantinou and R. Gani, “New group-contribution method for estimating properties of pure compounds”. Aiche J., Vol 40, pp. 1697-1710, 1994.
[43]. J. Marrero and R. Gani, “Group-contribution based estimation of pure component properties”. Fluid Phase Equilib., Vol 183, pp. 183-208, 2001.
[44]. Y. Nannoolal, et al., “Estimation of pure component properties Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via group contributions and group interactions”. Fluid Phase Equilib., Vol 226, pp. 45-63, 2004.
[45]. Y. Nannoolal, J. Rarey, and D. Ramjugernath, “Estimation of pure component properties. Part 2. Estimation of critical property data by group contribution”. Fluid Phase Equilib., Vol 252, pp. 1-27, 2007.
[46]. Byung Ik Lee and Michael G. Kesler, “A generalized thermodynamic correlation based on three‐parameter corresponding states”. Aiche J., Vol 21, pp. 510-527, 1975.
[47]. DIPPR Database. https://www.aiche.org/dippr.
[48]. 梁興豪,「探討不同量子化學方法對PR+COSMOSAC狀態方程式應用於預測純物質及混合流體相行為之影響」,國立中央大學,碩士論文,2018。
[49]. Philippos Coutsikos, Kostis Magoulas, and Dimitrios Tassios, “Solubilities of p-quinone and 9,10-anthraquinone in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 42, pp. 463-466, 1997.
[50]. Alberto Stassi, et al., “Assessment of solubility of ketoprofen and vanillic acid in supercritical CO2 under dynamic conditions”. J. Chem. Eng. Data, Vol 45, pp. 161-165, 2000.
[51]. Zhen Huang, et al., “Solubility of aspirin in supercritical carbon dioxide with and without acetone”. J. Chem. Eng. Data, Vol 49, pp. 1323-1327, 2004.
[52]. Keith P Johnston, David H Ziger, and Charles A Eckert, “Solubilities of hydrocarbon solids in supercritical fluids. The augmented van der Waals treatment”. Ind. Eng. Chem. Fundam., Vol 21, pp. 191-197, 1982.
[53]. David J. Miller, et al., “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide from 313 K to 523 K and pressures from 100 bar to 450 bar”. J. Chem. Eng. Data, Vol 41, pp. 779-786, 1996.
[54]. Simon S. T. Ting, et al., “Solubility of naproxen in supercritical carbon dioxide with and without cosolvents”. Ind. Eng. Chem. Res, Vol 32, pp. 1471-1481, 1993.
[55]. E. Sahle-Demessie, et al., “Solubility of organic biocides in supercritical CO2 and CO2 + cosolvent mixtures”. J. Chem. Eng. Data, Vol 48, pp. 541-547, 2003.
[56]. R. Murga, et al., “Solubility of three hydroxycinnamic acids in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 27, pp. 239-245, 2003.
[57]. R. Murga, et al., “Solubility of some phenolic compounds contained in grape seeds, in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 23, pp. 113-121, 2002.
[58]. A. Cortesi, et al., “Effect of chemical structure on the solubility of antioxidants in supercritical carbon dioxide: experimental data and correlation”. J. Supercrit. Fluids, Vol 14, pp. 139-144, 1999.
[59]. Ruth Murga, et al., “Solubility of syringic and vanillic acids in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 49, pp. 779-782, 2004.
[60]. S. J. Macnaughton and N. R. Foster, “Solubility of DDT and 2,4-DIN supercritical carbon-dioxide and supercritical carbon-dioxide saturated with water ”. Ind. Eng. Chem. Res, Vol 33, pp. 2757-2763, 1994.
[61]. Z. Huang, S. Kawi, and Y. C. Chiew, “Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents”. J. Supercrit. Fluids, Vol 30, pp. 25-39, 2004.
[62]. P. Alessi, et al., “Particle production of steroid drugs using supercritical fluid processing”. Ind. Eng. Chem. Res, Vol 35, pp. 4718-4726, 1996.
[63]. William J. Schmitt and Robert C. Reid, “Solubility of monofunctional organic solids in chemically diverse supercritical fluids”. J. Chem. Eng. Data, Vol 31, pp. 204-212, 1986.
[64]. Y. P. Chen, Y. M. Chen, and M. Tang, “Solubilities of cinnamic acid, phenoxyacetic acid and 4-methoxyphenylacetic acid in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 275, pp. 33-38, 2009.
[65]. SL Jimmy Yun, et al., “Solubility of cholesterol in supercritical carbon dioxide”. Ind. Eng. Chem. Res, Vol 30, pp. 2476-2482, 1991.
[66]. G. I. Burgos-Solorzano, J. F. Brennecke, and M. A. Stadtherr, “Solubility measurements and modeling of molecules of biological and pharmaceutical interest with supercritical CO2”. Fluid Phase Equilib., Vol 220, pp. 57-69, 2004.
[67]. M. Johannsen and G. Brunner, “Solubility of the xanthines caffeine, theophylline and theobromine in supercritical carbon-dioxide”. Fluid Phase Equilib., Vol 95, pp. 215-226, 1994.
[68]. Stuart J. Macnaughton, et al., “Solubility of anti-inflammatory drugs in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 41, pp. 1083-1086, 1996.
[69]. James W. Hampson, et al., “Solubility of three veterinary sulfonamides in supercritical carbon dioxide by a recirculating equilibrium method”. J. Chem. Eng. Data, Vol 44, pp. 1222-1225, 1999.
[70]. Xing, et al., “Solubility of artemisinin in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 48, pp. 330-332, 2003.
[71]. Yadollah Yamini, Jalal Hassan, and Soheila Haghgo, “Solubilities of some nitrogen-containing drugs in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 46, pp. 451-455, 2001.
[72]. Zeljko Knez, et al., “Solubility of nifedipine and nitrendipine in supercritical CO2”. J. Chem. Eng. Data, Vol 40, pp. 216-220, 1995.
[73]. Ana Rita C. Duarte, et al., “Solubility of flurbiprofen in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 49, pp. 449-452, 2004.
[74]. Rajasekhar Ch, Chandrasekhar Garlapati, and Giridhar Madras, “Solubility of n-(4-ethoxyphenyl)ethanamide in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 55, pp. 1437-1440, 2010.
[75]. Aziz Garmroodi, Jalal Hassan, and Yadollah Yamini, “Solubilities of the drugs benzocaine, metronidazole benzoate, and naproxen in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 49, pp. 709-712, 2004.
[76]. Mehdi Asghari-Khiavi and Yadollah Yamini, “Solubility of the drugs bisacodyl, methimazole, methylparaben, and iodoquinol in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 48, pp. 61-65, 2003.
[77]. Ligia Barna, et al., “Solubility of flouranthene, chrysene, and triphenylene in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 41, pp. 1466-1469, 1996.
[78]. Mark McHugh and Michael E. Paulaitis, “Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 25, pp. 326-329, 1980.
[79]. Yadollah Yamini and Naader Bahramifar, “Solubility of polycyclic aromatic hydrocarbons in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 45, pp. 53-56, 2000.
[80]. Anatoly Kramer and George Thodos, “Solubility of 1-octadecanol and stearic acid in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 34, pp. 184-187, 1989.
[81]. Jun-Shun Yau and Fuan-Nan Tsai, “Solubilities of 1-eicosanol and eicosanoic acid in supercritical carbon dioxide from 308.2 to 328.2 K at pressures to 21.26 MPa”. J. Chem. Eng. Data, Vol 39, pp. 827-829, 1994.
[82]. Darrell L. Sparks, et al., “Solubility of azelaic acid in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 52, pp. 1246-1249, 2007.
[83]. M. Charoenchaitrakool, et al., “Micronization by rapid expansion of supercritical solutions to enhance the dissolution rates of poorly water-soluble pharmaceuticals”. Ind. Eng. Chem. Res, Vol 39, pp. 4794-4802, 2000.
[84]. Petra Kotnik, Mojca Škerget, and Željko Knez, “Solubility of nicotinic acid and nicotinamide in carbon dioxide at T = (313.15 to 373.15) K and p = (5 to 30) MPa: experimental data and correlation”. J. Chem. Eng. Data, Vol 56, pp. 338-343, 2011.
[85]. Julián García-González, et al., “Solubilities of phenol and pyrocatechol in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 46, pp. 918-921, 2001.
[86]. K. W. Cheng, M. Tang, and Y. P. Chen, “Solubilities of benzoin, propyl 4-hydroxybenzoate and mandelic acid in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 201, pp. 79-96, 2002.
[87]. H. R. Li, et al., “Determination, correlation and prediction of the solubilities of niflumic acid, clofenamic acid and tolfenamic acid in supercritical CO2”. Fluid Phase Equilib., Vol 392, pp. 95-103, 2015.
[88]. Ruth A. Van Leer and Michael E. Paulaitis, “Solubilities of phenol and chlorinated phenols in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 25, pp. 257-259, 1980.
[89]. A. Vatanara, et al., “Solubility of some inhaled glucocorticoids in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 33, pp. 21-25, 2005.
[90]. J. R. Dean, et al., “Estimation and determination of steroid solubility in supercritical carbon dioxide”. Analyst, Vol 120, pp. 2153-2157, 1995.
[91]. M. Hojjati, et al., “Solubility of some statin drugs in supercritical carbon dioxide and representing the solute solubility data with several density-based correlations”. J. Supercrit. Fluids, Vol 41, pp. 187-194, 2007.
[92]. A. Z. Hezave, S. Aftab, and F. Esmaeilzadeh, “Solubility of sulindac in the supercritical carbon dioxide: Experimental and modeling approach”. J. Supercrit. Fluids, Vol 68, pp. 39-44, 2012.
[93]. M. H. Hosseini, N. Alizadeh, and A. R. Khanchi, “Solubility analysis of clozapine and lamotrigine in supercritical carbon dioxide using static system”. J. Supercrit. Fluids, Vol 52, pp. 30-35, 2010.
[94]. Y. Yamini, J. Arab, and M. Asghari-khiavi, “Solubilities of phenazopyridine, propranolol, and methimazole in supercritical carbon dioxide”. J. Pharm. Biomed. Anal., Vol 32, pp. 181-187, 2003.
[95]. Ali Zeinolabedini Hezave and Feridun Esmaeilzadeh, “Solubility measurement of diclofenac acid in the supercritical CO2”. J. Chem. Eng. Data, Vol 57, pp. 1659-1664, 2012.
[96]. Randy D. Weinstein, Joseph J. Gribbin, and Kenneth R. Muske, “Solubility and salting behavior of several β-adrenergic blocking agents in liquid and supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 50, pp. 226-229, 2005.
[97]. Frank P. Lucien and Neil R. Foster, “Influence of matrix composition on the solubility of hydroxybenzoic acid Isomers in supercritical carbon dioxide”. Ind. Eng. Chem. Res, Vol 35, pp. 4686-4699, 1996.
[98]. W. M. Li, et al., “Single-component and mixture solubilities of ethyl p-hydroxybenzoate and ethyl p-aminobenzoate in supercritical CO2”. Fluid Phase Equilib., Vol 264, pp. 93-98, 2008.
[99]. R. F. Rodrigues, et al., “Coumarin solubility and extraction from emburana (Torresea cearensis) seeds with supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 43, pp. 375-382, 2008.
[100]. Y. M. Chen and Y. P. Chen, “Measurements for the solid solubilities of antipyrine, 4-aminoantipyrine and 4-dimethylaminoantipyrine in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 282, pp. 82-87, 2009.
[101]. J. L. Li, et al., “Equilibrium solubilities of a p-toluenesulfonamide and sulfanilamide mixture in supercritical carbon dioxide with and without ethanol”. J. Supercrit. Fluids, Vol 52, pp. 11-17, 2010.
[102]. Luigi Manna and Mauro Banchero, “Solubility of tolbutamide and chlorpropamide in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 63, pp. 1745-1751, 2018.
[103]. Z. Huang, et al., “The solubilities of xanthone and xanthene in supercritical carbon dioxide: Structure effect”. J. Supercrit. Fluids, Vol 36, pp. 91-97, 2005.
[104]. Helene Perrotin-Brunel, et al., “Solubility of cannabinol in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 55, pp. 3704-3707, 2010.
[105]. Rogério Favareto, et al., “Phase equilibria of acrylonitrile and p-bromobenzaldehyde in carbon dioxide”. J. Chem. Eng. Data, Vol 53, pp. 1080-1084, 2008.
[106]. Y. Yamini, et al., “Solubility of dihydroxybenzene isomers in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 152, pp. 299-305, 1998.
[107]. J. W. Chen and F. N. Tsai, “Solubilities of methoxybenzoic acid isomer in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 107, pp. 189-200, 1995.
[108]. Q. S. Li, et al., “Solubility of solid solutes in supercritical carbon dioxide with and without cosolvents”. Fluid Phase Equilib., Vol 207, pp. 183-192, 2003.
[109]. H. Asiabi, et al., “Measurement and correlation of the solubility of two steroid drugs in supercritical carbon dioxide using semi empirical models”. J. Supercrit. Fluids, Vol 78, pp. 28-33, 2013.
[110]. A. G. Reveco-Chilla, et al., “Solubility of menadione and dichlone in supercritical carbon dioxide”. Fluid Phase Equilib., Vol 423, pp. 84-92, 2016.
[111]. Y. M. Chen, et al., “Solid solubility of antilipemic agents and micronization of gemfibrozil in supercritical carbon dioxide”. J. Supercrit. Fluids, Vol 52, pp. 175-182, 2010.
[112]. Tongju Liu, et al., “Solubility of triphenylmethyl chloride and triphenyltin chloride in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 54, pp. 1913-1915, 2009.
[113]. Chandrasekhar Garlapati and Giridhar Madras, “Solubilities of dodecanoic and tetradecanoic acids in supercritical CO2 with and without entrainers”. J. Chem. Eng. Data, Vol 53, pp. 2637-2641, 2008.
[114]. Chandrasekhar Garlapati and Giridhar Madras, “Solubilities of hexadecanoic and octadecanoic acids in supercritical CO2 with and without cosolvents”. J. Chem. Eng. Data, Vol 53, pp. 2913-2917, 2008.
[115]. Eduardo Pérez, et al., “High-pressure phase equilibria for the binary system carbon dioxide+dibenzofuran”. J. Supercrit. Fluids, Vol 46, pp. 238-244, 2008.
[116]. Simon Bristow, Boris Y. Shekunov, and Peter York, “Solubility analysis of drug compounds in supercritical carbon dioxide using static and dynamic extraction systems”. Ind. Eng. Chem. Res, Vol 40, pp. 1732-1739, 2001.
[117]. Frank P. Lucien and Neil R. Foster, “Solubilities of mixed hydroxybenzoic acid Isomers in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 43, pp. 726-731, 1998.
[118]. Zhimin Liu, et al., “Solubility of organic acids in ethyl acetate expanded with CO2”. Fluid Phase Equilib., Vol 167, pp. 123-130, 2000.
[119]. L. Brandt, et al., “Solubility and density measurements of palmitic acid in supercritical carbon dioxide plus alcohol mixtures”. Fluid Phase Equilib., Vol 289, pp. 72-79, 2010.
[120]. M. H. Zhong, B. X. Han, and H. K. Yan, “Solubility of stearic acid in supercritical CO2 with cosolvents”. J. Supercrit. Fluids, Vol 10, pp. 113-118, 1997.
[121]. Z. Huang, S. Kawi, and Y. C. Chiew, “Solubility of cholesterol and its esters in supercritical carbon dioxide with and without cosolvents”. J. Supercrit. Fluids, Vol 30, pp. 25-39, 2004.
[122]. Neil R. Foster, et al., “Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical fluids”. Ind. Eng. Chem. Res, Vol 32, pp. 2849-2853, 1993.
[123]. Harcharan Singh, et al., “Solubility of cholesterol in supercritical ethane and binary gas mixtures containing ethane”. Ind. Eng. Chem. Res, Vol 32, pp. 2841-2848, 1993.
[124]. William E. Hollar and Paul Ehrlich, “Solubility of naphthalene in mixtures of carbon dioxide and ethane”. J. Chem. Eng. Data, Vol 35, pp. 271-275, 1990.
[125]. G. R. Smith and C. J. Wormald, “Solubilities of naphthalene in (CO2 + C2H6) and (CO2 + C3H8) up to 333 K and 17.7 MPa”. Fluid Phase Equilib., Vol 57, pp. 205-222, 1990.
[126]. R. M. Lemert and K. P. Johnston, “Solubilities and selectivities in supercritical fluid mixtures near critical end-points”. Fluid Phase Equilib., Vol 59, pp. 31-55, 1990.
[127]. D. J. Dixon and K. P. Johnston, “Molecular thermodynamics of solubilities in gas antisolcent crystallization”. Aiche J., Vol 37, pp. 1441-1449, 1991.
[128]. John G. Van Alsten and Charles A. Eckert, “Effect of entrainers and of solute size and polarity in supercritical fluid solutions”. J. Chem. Eng. Data, Vol 38, pp. 605-610, 1993.
[129]. Eduardo Pérez, et al., “Cosolvent effect of methanol and acetic acid on dibenzofuran solubility in supercritical carbon dioxide”. J. Chem. Eng. Data, Vol 53, pp. 2649-2653, 2008.
[130]. J. M. Dobbs, et al., “Modification of supercritical fluid phase behavior using polar cosolvents”. Ind. Eng. Chem. Res, Vol 26, pp. 56-65, 1987.
[131]. Joseph M. Dobbs and Keith P. Johnston, “Selectivities in pure and mixed supercritical fluid solvents”. Ind. Eng. Chem. Res, Vol 26, pp. 1476-1482, 1987.
[132]. J. S. Jin, et al., “Solubilities of benzoic acid in supercritical CO2 with mixed cosolvent”. Fluid Phase Equilib., Vol 226, pp. 9-13, 2004.
[133]. Janette Mendez-Santiago and Amyn S. Teja, “Solubility of benzoic acid in mixtures of CO2 + hexane”. J. Chem. Eng. Data, Vol 57, pp. 3438-3442, 2012.
[134]. William J. Schmitt and Robert C. Reid, “The use of entrainers in modifying the solubility of phenanthrene and benzoic acid in supercritical carbon dioxide and ethane”. Fluid Phase Equilib., Vol 32, pp. 77-99, 1986.
[135]. Zhen Huang, et al., “Solubility of aspirin in supercritical carbon dioxide/alcohol mixtures”. Fluid Phase Equilib., Vol 237, pp. 9-15, 2005.
[136]. Gurdev S. Gurdial, et al., “Influence of chemical modifiers on the solubility of o- and m-hydroxybenzoic acid in supercritical carbon dioxide”. Ind. Eng. Chem. Res., Vol 32, pp. 1488-1497, 1993.
[137]. Zhimin Liu, et al., “Solubility of hydroxybenzoic acid isomers in ethyl acetate expanded with CO2”. J. Supercrit. Fluids, Vol 18, pp. 111-119, 2000.
[138]. Amparo Cháfer, et al., “trans-Cinnamic acid solubility enhancement in the presence of ethanol as a supercritical CO2 cosolvent”. J. Chem. Eng. Data, Vol 54, pp. 2263-2268, 2009.
[139]. Jun-su Jin, et al., “Solubility of propyl p-hydroxybenzoate in supercritical carbon dioxide with and without a cosolvent”. J. Chem. Eng. Data, Vol 50, pp. 801-803, 2005.
[140]. Richard M. Lemert and Keith P. Johnston, “Chemical complexing agents for enhanced solubilities in supercritical fluid carbon dioxide”. Ind. Eng. Chem. Res, Vol 30, pp. 1222-1231, 1991.
[141]. Chandrasekhar Garlapati and Giridhar Madras, “Solubilities of some chlorophenols in supercritical CO2 in the presence and absence of cosolvents”. J. Chem. Eng. Data, Vol 55, pp. 273-277, 2010.
[142]. Yoshio Iwai, et al., “Measurement of entrainer effects of water and ethanol on solubility of caffeine in supercritical carbon dioxide by FT-IR spectroscopy”. J. Supercrit. Fluids, Vol 38, pp. 312-318, 2006.
[143]. Monika Johannsen and Gerd Brunner, “Measurements of solubilities of xanthines in supercritical carbon dioxide + methanol”. J. Chem. Eng. Data, Vol 40, pp. 431-434, 1995. |