參考文獻 |
Reference
1. Yu, K.M.K., I. Curcic, J. Gabriel, and S.C.E. Tsang, Recent advances in CO2 capture and utilization. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2008. 1(11): p. 893-899.
2. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
3. Gutov, O.V., W. Bury, D.A. Gomez‐Gualdron, V. Krungleviciute, D. Fairen‐Jimenez, J.E. Mondloch, A.A. Sarjeant, S.S. Al‐Juaid, R.Q. Snurr, and J.T. Hupp, Water‐Stable Zirconium‐Based Metal–Organic Framework Material with High‐Surface Area and Gas‐Storage Capacities. Chemistry–A European Journal, 2014. 20(39): p. 12389-12393.
4. Feng, D., W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D.J. Darensbourg, and H.-C. Zhou, Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. Journal of the American Chemical Society, 2013. 135(45): p. 17105-17110.
5. Hu, Z. and D. Zhao, De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Transactions, 2015. 44(44): p. 19018-19040.
6. DeCoste, J.B., G.W. Peterson, H. Jasuja, T.G. Glover, Y.-g. Huang, and K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013. 1(18): p. 5642-5650.
7. Ethiraj, J., E. Albanese, B. Civalleri, J.G. Vitillo, F. Bonino, S. Chavan, G.C. Shearer, K.P. Lillerud, and S. Bordiga, Carbon dioxide adsorption in amine‐functionalized mixed‐ligand metal–organic frameworks of UiO‐66 topology. ChemSusChem, 2014. 7(12): p. 3382-3388.
8. Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
9. Valenzano, L., B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, and C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chemistry of Materials, 2011. 23(7): p. 1700-1718.
10. Chavan, S., J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, and K.P. Lillerud, H2 storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012. 14(5): p. 1614-1626.
11. Wiersum, A.D., E. Soubeyrand‐Lenoir, Q. Yang, B. Moulin, V. Guillerm, M.B. Yahia, S. Bourrelly, A. Vimont, S. Miller, and C. Vagner, An evaluation of UiO‐66 for gas‐based applications. Chemistry–An Asian Journal, 2011. 6(12): p. 3270-3280.
12. Wu, H., Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society, 2013. 135(28): p. 10525-10532.
13. Gutov, O.V., M.G.l. Hevia, E.C. Escudero-Adán, and A. Shafir, Metal–organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorganic chemistry, 2015. 54(17): p. 8396-8400.
14. Wang, K., C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu, and C. Zhong, Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 2016. 289: p. 486-493.
15. Gutov, O.V., S. Molina, E.C. Escudero‐Adán, and A. Shafir, Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal–Organic Frameworks. Chemistry–A European Journal, 2016. 22(38): p. 13582-13587.
16. Han, Y., M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang, and X. Guo, Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015. 17(33): p. 6434-6440.
17. Shearer, G.C., S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K.P. Lillerud, Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
18. Liu, B. and B. Smit, Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. The Journal of Physical Chemistry C, 2010. 114(18): p. 8515-8522.
19. Yang, Q., A.D. Wiersum, P.L. Llewellyn, V. Guillerm, C. Serre, and G. Maurin, Functionalizing porous zirconium terephthalate UiO-66 (Zr) for natural gas upgrading: a computational exploration. Chemical Communications, 2011. 47(34): p. 9603-9605.
20. Wang, B., H. Huang, X.-L. Lv, Y. Xie, M. Li, and J.-R. Li, Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization. Inorganic chemistry, 2014. 53(17): p. 9254-9259.
21. Zhang, W., H. Huang, C. Zhong, and D. Liu, Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal–organic frameworks: a combined experimental and molecular simulation study. Physical Chemistry Chemical Physics, 2012. 14(7): p. 2317-2325.
22. Hu, J., Y. Liu, J. Liu, C. Gu, and D. Wu, Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: A molecular simulation study. Fuel, 2018. 226: p. 591-597.
23. Hu, J., Y. Liu, J. Liu, C. Gu, and D. Wu, High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018. 256: p. 25-31.
24. Xia, L. and Q. Liu, Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study. Computational Materials Science, 2017. 126: p. 176-181.
25. Darkrim, F. and D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. The Journal of chemical physics, 1998. 109(12): p. 4981-4984.
26. Wenzel, S.E., M. Fischer, F. Hoffmann, and M. Fröba, Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker− A Promising Material for Hydrogen Storage. Inorganic chemistry, 2009. 48(14): p. 6559-6565.
27. Thornton, A.W., R. Babarao, A. Jain, F. Trousselet, and F.-X. Coudert, Defects in metal–organic frameworks: a compromise between adsorption and stability? Dalton Transactions, 2016. 45(10): p. 4352-4359.
28. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
29. Kohn, W. and L. Sham, Quantum density oscillations in an inhomogeneous electron gas. Physical review, 1965. 137(6A): p. A1697.
30. Payne, M.C., M.P. Teter, D.C. Allan, T. Arias, and a.J. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 1992. 64(4): p. 1045.
31. Metropolis, N., The beginning of the Monte Carlo method. Los Alamos Science, 1987. 15(584): p. 125-130.
32. Lennard-Jones, J.E., Cohesion. Proceedings of the Physical Society, 1931. 43(5): p. 461.
33. BIOVIA, D. S., Materials Studio. San Diego:. 2016.
34. Clark, S.J., M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, and M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005. 220(5/6): p. 567-570.
35. BIOVIA, D. S., Sorption. San Diego: Dassault Systèmes. 2016.
36. Trickett, C.A., K.J. Gagnon, S. Lee, F. Gándara, H.B. Bürgi, and O.M. Yaghi, Definitive molecular level characterization of defects in UiO‐66 crystals. Angewandte Chemie International Edition, 2015. 54(38): p. 11162-11167.
37. Karabacak, M., M. Cinar, Z. Unal, and M. Kurt, FT-IR, UV spectroscopic and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 2-aminoterephthalic acid. Journal of Molecular Structure, 2010. 982(1-3): p. 22-27.
38. Rogge, S.M.J., J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, and V. Van Speybroeck, Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion. Chemistry of Materials, 2016. 28(16): p. 5721-5732.
39. Chin, H.-Y., Adsorption of carbon dioxide in defective zirconiumbased metal-organic frameworks. 2017.
40. Shearer, G.C., S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, and K.P. Lillerud, Tuned to perfection: Ironing out the defects in metal–organic framework uio-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
41. Xiao, D.J., E.D. Bloch, J.A. Mason, W.L. Queen, M.R. Hudson, N. Planas, J. Borycz, A.L. Dzubak, P. Verma, and K. Lee, Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron (II) sites. Nature chemistry, 2014. 6(7): p. 590.
42. Harris, J.G. and K.H. Yung, Carbon dioxide′s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. The Journal of Physical Chemistry, 1995. 99(31): p. 12021-12024.
43. Potoff, J.J. and J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. American Institute of Chemical Engineers journal, 2001. 47(7): p. 1676-1682.
44. Dokur, D. and S. Keskin, Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations. Industrial & engineering chemistry research, 2018. 57(6): p. 2298-2309.
45. Yang, Q., A.D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, and G. Maurin, Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66 (Zr): a joint experimental and modeling approach. The Journal of Physical Chemistry C, 2011. 115(28): p. 13768-13774.
46. Ismail, A.F., K.C. Khulbe, and T. Matsuura, Gas separation membranes. Vol. 7. 2015: Springer.
|