博碩士論文 106324032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.14.131.115
姓名 黃鈞平(Chun-Ping Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 含缺陷鋯金屬有機框架之氣體吸附機制模擬計算探討
(Computational Investigation of Gas Adsorption Mechanism in Defective Zirconium-Based Metal-Organic Frameworks)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) UiO-66是一種孔洞材料其結構由鋯金屬離子簇和配位基(對苯二甲酸)所組成的鋯金屬有機框架結構,因為此鋯金屬有機框架結構具有出色的熱穩定性、化學穩定性,和較大孔洞體積所以是一直以來在氣體捕捉和分離的應用上是非常熱門的材料。因為在高缺陷程度的鋯金屬有機框架可以維持其穩定性所以適合用缺陷工程方法來調整不同的物理和化學特性。研究顯示在UiO-66製程中加入不同的改質劑(modulators)可以產生具有缺陷(missing-linker defect)的晶體結構,此缺陷和缺陷處的補償基團(defect compensating groups)的存在會改變孔洞性(porosity)、表面積(surface area)和氣體與MOF之間的作用力,進而改變其氣體吸附機制。
有關於MOF的缺陷和配位基官能化改質的研究一直發展中,然而目前尚未發現有關於探討具有不同補償基團的缺陷UiO-66在不同壓力下是如何影響氣體吸附機制的決定因子和氣體分佈的變化,在此研究中我們使用蒙地卡羅法(Monte Carlo simulations)來進行二氧化碳和氮氣吸附並依照其結果來探討氣體在具有不同補償基團的缺陷UiO-66中的吸附機制,此外我們也探討不同補償基團對於氣體分離的影響。我們根據不同的compensated groups把缺陷UiO-66分成二類進行分析:鹵素官能基系列(Halogen groups series)和碳氫官能基系列(Hydrocarbon groups series),結果顯示高壓下,二氧化碳在碳氫官能基缺陷模型中的氣體吸附量主導因素是自由體積分率(fractional free volume),而在鹵素官能基缺陷模型的高壓吸附中,自由體積分率(fractional free volume)和等溫吸附熱(isosteric heat)二者對於氣體吸附量都是重要的影響因素。高壓下的氮氣在碳氫官能基缺陷模型的吸附量主導因素是自由體積分率,在鹵素官能基缺陷模型吸附量的主導因素是表面積(surface area),然而低壓下二氧化碳和氮氣在全部的缺陷模型中的吸附量的主導因素都是等溫吸附熱(isosteric heat)。在分析氣體分佈時我們根據配位基(BDC)的密度把缺陷模型內的吸附位置分成二類High BDC density (HBD) sites and low BDC density (LBD) sites,而對於二氧化碳和氮氧在缺陷模型的氣體分佈,大多數情況下HBD sites是主要吸附位置,除了在LBD位置具有大自由體積的模型例如channel models的高壓氮氧吸附以及在具有CF3官能基模型的低壓二氧化碳吸附會出現在LBD位置。
摘要(英) UiO-66 is kind of zirconium-based metal-organic frameworks (Zr-MOFs) which is consisted of zirconium metal cluster and benzene-1,4-dicarboxylic acid (BDC) as its ligands, and it is a popular material for gas adsorption and separation application due to its excellent chemical stability, thermal stability and large free volume. Zr-MOFs are candidate which are suitable to tune different physical and chemical properties by defect engineering because Zr-MOFs can retain stability at high defect concentration. Studies have shown that the missing-linker defect can be created in the UiO-66 crystal structure by adding different modulators in the synthesis step. The existence of defect and compensate groups at defect sites can change the porosity, surface and the interaction between gas and MOF lead the gas mechanism to change.
There are many studies concerning defect and ligand functionality, however, we have not found the study concerning about compensating groups of defective UiO-66 affecting the dominant factor in adsorption mechanism and changing of adsorption distribution with varied pressure. In this study, we use Monte Carlo (MC) simulations to execute the CO2 and N2 adsorption and investigate the gas adsorption mechanism in defective UiO-66 with different compensating groups. In addition, we also investigated the influence of different compensating groups to defective UiO-66 be used for gas separation.
We classified defective UiO-66 into two series to do analysis based on different compensating groups, one is hydrocarbon-series and the other is halogen-series. The results indicate that fractional free volume is key factor for CO2 uptakes in hydrocarbon-series defective models at high pressure, and both of fractional free volume (FFV) and isosteric heat are important factors for CO2 uptakes in halogen-series at high pressure. For N2 uptakes at high pressure, FFV is key factor for hydrocarbon-series defective models, and surface area is key factor for halogen-series defective models, however the isosteric heat is key factor for CO2 and N2 uptakes in all defective models at low pressure. We classified the adsorption sites into high BDC density (HBD) sites and low BDC density (LBD) sites based on the BDC ligands density, and in most instances the HBD sites is main adsorption sites for CO2 and N2 except N2 adsorption in channel models under high pressure and CO2 adsorption in TriF model under low pressure.
關鍵字(中) ★ 缺陷鋯金屬有機框架
★ 蒙地卡羅
★ 氣體吸附機制
關鍵字(英) ★ Defective zirconium-based metal-organic frameworks
★ Monte Carlo simulations
★ gas adsorption mechanism
論文目次 摘要 i
Abstract iii
Acknowledgement v
List of Figures iii
List of Tables vi
Chapter 1 Background 1
1-1 Introduction 1
1-2 Literature Review 3
1-3 Motivation 14
Chapter 2 Theory 15
2-1 Density Functional Theory 15
2-2 Monte Carlo Method (MC) 22
Chapter 3 Computational Methodology 26
3-1 Software 26
3-2 Computational Package 26
3-3 Convergence Testing for NH2-UiO-66 27
3-4 Defect Configuration Selection 28
3-5 Model Construction 30
3-6 Force Field of Adsorbate 31
3-7 Force Field of Adsorbent 33
3-8 Charge Assignment 36
Chapter 4 Results and Discussion 38
4-1 Adsorption Behavior Under High Pressure 39
4-2 Adsorption Behavior Under Low Pressure 45
4-3 Mixture Gas 49
4-4 Adsorption Sites Discussion 53
Chapter 5 Conclusion 65
Chapter 6 Future Works 67
Reference 68
Appendix 73
參考文獻 Reference
1. Yu, K.M.K., I. Curcic, J. Gabriel, and S.C.E. Tsang, Recent advances in CO2 capture and utilization. ChemSusChem: Chemistry & Sustainability Energy & Materials, 2008. 1(11): p. 893-899.
2. Zhou, H.-C., J.R. Long, and O.M. Yaghi, Introduction to Metal–Organic Frameworks. Chemical Reviews, 2012. 112(2): p. 673-674.
3. Gutov, O.V., W. Bury, D.A. Gomez‐Gualdron, V. Krungleviciute, D. Fairen‐Jimenez, J.E. Mondloch, A.A. Sarjeant, S.S. Al‐Juaid, R.Q. Snurr, and J.T. Hupp, Water‐Stable Zirconium‐Based Metal–Organic Framework Material with High‐Surface Area and Gas‐Storage Capacities. Chemistry–A European Journal, 2014. 20(39): p. 12389-12393.
4. Feng, D., W.-C. Chung, Z. Wei, Z.-Y. Gu, H.-L. Jiang, Y.-P. Chen, D.J. Darensbourg, and H.-C. Zhou, Construction of ultrastable porphyrin Zr metal–organic frameworks through linker elimination. Journal of the American Chemical Society, 2013. 135(45): p. 17105-17110.
5. Hu, Z. and D. Zhao, De facto methodologies toward the synthesis and scale-up production of UiO-66-type metal–organic frameworks and membrane materials. Dalton Transactions, 2015. 44(44): p. 19018-19040.
6. DeCoste, J.B., G.W. Peterson, H. Jasuja, T.G. Glover, Y.-g. Huang, and K.S. Walton, Stability and degradation mechanisms of metal–organic frameworks containing the Zr6O4(OH)4 secondary building unit. Journal of Materials Chemistry A, 2013. 1(18): p. 5642-5650.
7. Ethiraj, J., E. Albanese, B. Civalleri, J.G. Vitillo, F. Bonino, S. Chavan, G.C. Shearer, K.P. Lillerud, and S. Bordiga, Carbon dioxide adsorption in amine‐functionalized mixed‐ligand metal–organic frameworks of UiO‐66 topology. ChemSusChem, 2014. 7(12): p. 3382-3388.
8. Cavka, J.H., S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, and K.P. Lillerud, A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. Journal of the American Chemical Society, 2008. 130(42): p. 13850-13851.
9. Valenzano, L., B. Civalleri, S. Chavan, S. Bordiga, M.H. Nilsen, S. Jakobsen, K.P. Lillerud, and C. Lamberti, Disclosing the complex structure of UiO-66 metal organic framework: a synergic combination of experiment and theory. Chemistry of Materials, 2011. 23(7): p. 1700-1718.
10. Chavan, S., J.G. Vitillo, D. Gianolio, O. Zavorotynska, B. Civalleri, S. Jakobsen, M.H. Nilsen, L. Valenzano, C. Lamberti, and K.P. Lillerud, H2 storage in isostructural UiO-67 and UiO-66 MOFs. Physical Chemistry Chemical Physics, 2012. 14(5): p. 1614-1626.
11. Wiersum, A.D., E. Soubeyrand‐Lenoir, Q. Yang, B. Moulin, V. Guillerm, M.B. Yahia, S. Bourrelly, A. Vimont, S. Miller, and C. Vagner, An evaluation of UiO‐66 for gas‐based applications. Chemistry–An Asian Journal, 2011. 6(12): p. 3270-3280.
12. Wu, H., Y.S. Chua, V. Krungleviciute, M. Tyagi, P. Chen, T. Yildirim, and W. Zhou, Unusual and Highly Tunable Missing-Linker Defects in Zirconium Metal–Organic Framework UiO-66 and Their Important Effects on Gas Adsorption. Journal of the American Chemical Society, 2013. 135(28): p. 10525-10532.
13. Gutov, O.V., M.G.l. Hevia, E.C. Escudero-Adán, and A. Shafir, Metal–organic framework (MOF) defects under control: insights into the missing linker sites and their implication in the reactivity of zirconium-based frameworks. Inorganic chemistry, 2015. 54(17): p. 8396-8400.
14. Wang, K., C. Li, Y. Liang, T. Han, H. Huang, Q. Yang, D. Liu, and C. Zhong, Rational construction of defects in a metal–organic framework for highly efficient adsorption and separation of dyes. Chemical Engineering Journal, 2016. 289: p. 486-493.
15. Gutov, O.V., S. Molina, E.C. Escudero‐Adán, and A. Shafir, Modulation by Amino Acids: Toward Superior Control in the Synthesis of Zirconium Metal–Organic Frameworks. Chemistry–A European Journal, 2016. 22(38): p. 13582-13587.
16. Han, Y., M. Liu, K. Li, Y. Zuo, Y. Wei, S. Xu, G. Zhang, C. Song, Z. Zhang, and X. Guo, Facile synthesis of morphology and size-controlled zirconium metal–organic framework UiO-66: the role of hydrofluoric acid in crystallization. CrystEngComm, 2015. 17(33): p. 6434-6440.
17. Shearer, G.C., S. Chavan, S. Bordiga, S. Svelle, U. Olsbye, and K.P. Lillerud, Defect Engineering: Tuning the Porosity and Composition of the Metal–Organic Framework UiO-66 via Modulated Synthesis. Chemistry of Materials, 2016. 28(11): p. 3749-3761.
18. Liu, B. and B. Smit, Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs. The Journal of Physical Chemistry C, 2010. 114(18): p. 8515-8522.
19. Yang, Q., A.D. Wiersum, P.L. Llewellyn, V. Guillerm, C. Serre, and G. Maurin, Functionalizing porous zirconium terephthalate UiO-66 (Zr) for natural gas upgrading: a computational exploration. Chemical Communications, 2011. 47(34): p. 9603-9605.
20. Wang, B., H. Huang, X.-L. Lv, Y. Xie, M. Li, and J.-R. Li, Tuning CO2 selective adsorption over N2 and CH4 in UiO-67 analogues through ligand functionalization. Inorganic chemistry, 2014. 53(17): p. 9254-9259.
21. Zhang, W., H. Huang, C. Zhong, and D. Liu, Cooperative effect of temperature and linker functionality on CO2 capture from industrial gas mixtures in metal–organic frameworks: a combined experimental and molecular simulation study. Physical Chemistry Chemical Physics, 2012. 14(7): p. 2317-2325.
22. Hu, J., Y. Liu, J. Liu, C. Gu, and D. Wu, Effects of incorporated oxygen and sulfur heteroatoms into ligands for CO2/N2 and CO2/CH4 separation in metal-organic frameworks: A molecular simulation study. Fuel, 2018. 226: p. 591-597.
23. Hu, J., Y. Liu, J. Liu, C. Gu, and D. Wu, High CO2 adsorption capacities in UiO type MOFs comprising heterocyclic ligand. Microporous and Mesoporous Materials, 2018. 256: p. 25-31.
24. Xia, L. and Q. Liu, Adsorption of H2 on aluminum-based metal-organic frameworks: A computational study. Computational Materials Science, 2017. 126: p. 176-181.
25. Darkrim, F. and D. Levesque, Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes. The Journal of chemical physics, 1998. 109(12): p. 4981-4984.
26. Wenzel, S.E., M. Fischer, F. Hoffmann, and M. Fröba, Highly Porous Metal-Organic Framework Containing a Novel Organosilicon Linker− A Promising Material for Hydrogen Storage. Inorganic chemistry, 2009. 48(14): p. 6559-6565.
27. Thornton, A.W., R. Babarao, A. Jain, F. Trousselet, and F.-X. Coudert, Defects in metal–organic frameworks: a compromise between adsorption and stability? Dalton Transactions, 2016. 45(10): p. 4352-4359.
28. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
29. Kohn, W. and L. Sham, Quantum density oscillations in an inhomogeneous electron gas. Physical review, 1965. 137(6A): p. A1697.
30. Payne, M.C., M.P. Teter, D.C. Allan, T. Arias, and a.J. Joannopoulos, Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics, 1992. 64(4): p. 1045.
31. Metropolis, N., The beginning of the Monte Carlo method. Los Alamos Science, 1987. 15(584): p. 125-130.
32. Lennard-Jones, J.E., Cohesion. Proceedings of the Physical Society, 1931. 43(5): p. 461.
33. BIOVIA, D. S., Materials Studio. San Diego:. 2016.
34. Clark, S.J., M.D. Segall, C.J. Pickard, P.J. Hasnip, M.I. Probert, K. Refson, and M.C. Payne, First principles methods using CASTEP. Zeitschrift für Kristallographie-Crystalline Materials, 2005. 220(5/6): p. 567-570.
35. BIOVIA, D. S., Sorption. San Diego: Dassault Systèmes. 2016.
36. Trickett, C.A., K.J. Gagnon, S. Lee, F. Gándara, H.B. Bürgi, and O.M. Yaghi, Definitive molecular level characterization of defects in UiO‐66 crystals. Angewandte Chemie International Edition, 2015. 54(38): p. 11162-11167.
37. Karabacak, M., M. Cinar, Z. Unal, and M. Kurt, FT-IR, UV spectroscopic and DFT quantum chemical study on the molecular conformation, vibrational and electronic transitions of 2-aminoterephthalic acid. Journal of Molecular Structure, 2010. 982(1-3): p. 22-27.
38. Rogge, S.M.J., J. Wieme, L. Vanduyfhuys, S. Vandenbrande, G. Maurin, T. Verstraelen, M. Waroquier, and V. Van Speybroeck, Thermodynamic Insight in the High-Pressure Behavior of UiO-66: Effect of Linker Defects and Linker Expansion. Chemistry of Materials, 2016. 28(16): p. 5721-5732.
39. Chin, H.-Y., Adsorption of carbon dioxide in defective zirconiumbased metal-organic frameworks. 2017.
40. Shearer, G.C., S. Chavan, J. Ethiraj, J.G. Vitillo, S. Svelle, U. Olsbye, C. Lamberti, S. Bordiga, and K.P. Lillerud, Tuned to perfection: Ironing out the defects in metal–organic framework uio-66. Chemistry of Materials, 2014. 26(14): p. 4068-4071.
41. Xiao, D.J., E.D. Bloch, J.A. Mason, W.L. Queen, M.R. Hudson, N. Planas, J. Borycz, A.L. Dzubak, P. Verma, and K. Lee, Oxidation of ethane to ethanol by N2O in a metal–organic framework with coordinatively unsaturated iron (II) sites. Nature chemistry, 2014. 6(7): p. 590.
42. Harris, J.G. and K.H. Yung, Carbon dioxide′s liquid-vapor coexistence curve and critical properties as predicted by a simple molecular model. The Journal of Physical Chemistry, 1995. 99(31): p. 12021-12024.
43. Potoff, J.J. and J.I. Siepmann, Vapor–liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. American Institute of Chemical Engineers journal, 2001. 47(7): p. 1676-1682.
44. Dokur, D. and S. Keskin, Effects of Force Field Selection on the Computational Ranking of MOFs for CO2 Separations. Industrial & engineering chemistry research, 2018. 57(6): p. 2298-2309.
45. Yang, Q., A.D. Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, and G. Maurin, Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous zirconium terephthalate UiO-66 (Zr): a joint experimental and modeling approach. The Journal of Physical Chemistry C, 2011. 115(28): p. 13768-13774.
46. Ismail, A.F., K.C. Khulbe, and T. Matsuura, Gas separation membranes. Vol. 7. 2015: Springer.
指導教授 張博凱(Bor-Kae Chang) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明