博碩士論文 106324024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:18.117.153.38
姓名 袁紹軒(Shao Hsuan Yuan)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
(Core-Shell Zeolitic Imidazolate Framework Based Mixed Matrix Membrane for Gas Separation)
相關論文
★ 利用固相反應法與電鍍法製備鈣鈦礦太陽能電池之研究★ 設計以雙噻吩併環戊二烯為核心的電洞傳輸材料並製備高效率穩定鈣鈦礦太陽能電池
★ 反溶劑處理對於製備大面積鈣鈦礦太陽能電池影響★ 二氧化鈦奈米粒徑尺寸對介觀結構鈣鈦礦太陽能電池光伏特性之影響
★ 塗佈溫度與混合溶劑比例對於刮刀塗佈製備鈣鈦礦層影響及鈣鈦礦太陽能電池性能表現探討★ 熱處理效應對於混合陽離子鈣鈦礦太陽能電池之光電性質及電池穩定性影響
★ 蔗糖水熱碳化法及後續活化製備活性碳以及活性碳對空氣過濾的應用★ 雙金屬有機骨架結構混合基質膜合成及芳香烴吸附第一原理計算
★ 製膜溶劑對於混合基質膜中金屬有機框架結構沉澱影響與其氣體滲透特性之探討★ 金屬有機骨架材料與活性碳共填充之混和基材膜性質探討
★ 蒸氣相成長金屬有機框架材料合成★ 外表面積和靜電相互作用機理對MOFs染料吸附的重要性
★ 第一原理計算對於氮摻石墨烯在氧氣還原反應與拉曼增強的探討★ 金屬有機框架結構晶體形貌與缺陷對於混合基材薄膜特性與氣體滲透之探討
★ 鋯金屬有機框架結構之二氧化碳吸附性質探討★ 鋯金屬有機框架結構與石墨烯薄膜之氣體輸送 機制模擬探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 類沸石咪唑酯框架(ZIF)是一種具有發展性的材料應用於膜的氣體分離,在我們的研究中,藉由核延續法以核-殼的結構將ZIF-8與ZIF-67結合而形成ZIF-67@ZIF-8,相較於ZIF-67,ZIF-67@ZIF-8展現出高比表面積、氣體吸附以及熱穩定性,將ZIF填充物加入6FDA-DAM搭配適當的溶劑去製備混合基材薄膜。為了瞭解核-殼結構的氣體分離機制,薄膜的製備占很重要的角色來獲得無缺陷的複合膜,包括膠體溶液、priming method與熱處理。均勻散佈的核-殼沸石咪唑酯框架複合膜提供氣體擴散更多的微孔的通道,氣體擴散的結果指出複合膜擁有非凡的氫氣通透性以及微小地增加對於氮氣與甲烷的選擇性,最好性能的核-殼沸石咪唑酯框架複核膜超越了氫氣與甲烷的2008羅伯森上限,核-層類沸石咪唑酯框架複核膜的現象不只適用於玻璃高分子,也適用於橡膠高分子。
摘要(英) Zeolitic imidazolate framework (ZIF) is a promising material in membrane technology for gas separation. In our work, ZIF-8 and ZIF-67 were synthesized in the form of core-shell structure (ZIF-67@ZIF-8) by the seed mediated growth method. ZIF-67@ZIF-8 nanocrystals present higher surface area, gas uptake and thermal stability in comparison with the core (ZIF-67). ZIF fillers were added into 6FDA-DAM with the proper solvent to fabricate mixed matrix membranes (MMMs). In order to realize the mechanism of the core-shell structure, the preparation of membrane plays an important role to obtain defect-free nanocomposite by the colloidal solution, priming method and annealing treatment. The well-dispersed core-shell ZIFs nanocomposites provide more microporous pathways for gas separation. The result of MMMs demonstrates a remarkable hydrogen permeability and the slight enhancement of selectivities against N2 and CH4. The highest performance of ZIF-67@ZIF-8 MMM surpasses the 2008 Robeson’s upper bound for H2/CH4. This effect of core-shell structure can be observed in glassy as well as rubbery polymer.
關鍵字(中) ★ 類沸石咪唑框架配位材料
★ 核-層結構
★ 有機無機複合薄膜
★ 氣體滲透測試
★ 晶體形貌控制
★ 無缺陷薄膜
關鍵字(英) ★ Zeolitic imidazolate framework
★ core-shell structure
★ Mixed Matrix Membrane
★ Gas separation performance
★ Morphology control
★ Defect-free membrane
論文目次 摘要 ……………………………………………………………………………………..i
Abstract ……………………………………………………………………………………ii
Acknowledgement iv
List of Figures vii
List of Tables ix
Chapter 1 Background 1
1-1 Introduction 1
1-2 Review of Relevant Literature 5
1-3 Motivation 14
Chapter 2 Experimental 15
2-1 Materials and Reagents 15
2-2 Instruments 15
2-3 Instrument Analysis and Identification 16
2-3-1 Scanning Electron Microscopy 16
2-3-2 Transmission Electron Microscopy 17
2-3-3 Energy-Dispersive X-ray Spectroscopy 17
2-3-4 X-ray Diffraction 18
2-3-5 Thermogravimetric Analysis 19
2-3-6 Fourier-Transform Infrared spectroscopy 19
2-3-7 Gel Permeation Chromatography 19
2-3-8 Micropore Size and Surface Area Analysis 20
2-3-9 Nanomechanical characterization 21
2-3-10 Single Gas Separation System 21
2-4 Experiment Methods 23
2-4-1 Synthesis of Zeolitic Imidazolate Framework 23
2-4-2 Synthesis of Neat 6FDA-DAM 24
2-4-3 Fabrication of Mixed Matrixed Membranes 25
2-4-4 Gas permeation measurements 26
Chapter 3 Result and Discussion 28
3-1 Characteristics of ZIF-67 and ZIF-67@ZIF-8 Particles 28
3-1-1 X-ray Diffraction of ZIFs 28
3-1-2 Morphology of ZIFs 29
3-1-3 Sorption Analysis of ZIFs 31
3-1-4 Thermogravimetric Analysis of ZIFs 33
3-1-5 Dispersion in solvents 35
3-2 Characteristics of 6FDA-DAM 37
3-2-1 FTIR Spectra and GPC of 6FDA-DAM 37
3-3 Characteristics of ZIFs/6FDA-DAM Mixed Matrix Membranes 39
3-3-1 The Morphology of Mixed Matrix Membrane 39
3-3-2 XRD pattern of ZIFs/6FDA-DAM MMMs 43
3-3-3 FTIR Spectra of ZIFs/6FDA-DAM MMMs 44
3-3-4 Thermogravimetric Analysis of ZIFs/6FDA-DAM MMMs 45
3-3-5 Mechanical property of ZIFs/6FDA-DAM MMMs 47
3-4 Gas Separation Performance of ZIFs/6FDA-DAM MMMs 49
Chapter 4 Conclusions 60
Chapter 5 Future Work 61
Reference 62
參考文獻 1. Figueroa, J.D., T. Fout, S. Plasynski, H. McIlvried, and R.D. Srivastava, Advances in CO2 capture technology—The U.S. Department of Energy′s Carbon Sequestration Program. Int. J. Greenh. Gas Control, 2008. 2(1): p. 9-20.
2. Koros, W.J., Evolving beyond the thermal age of separation processes: Membranes can lead the way. AIChE J, 2004. 50(10): p. 2326-2334.
3. Robeson, L.M., The upper bound revisited. J. Membr. Sci, 2008. 320(1-2): p. 390-400.
4. Freeman, B.D., Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. Macromolecules, 1999. 32(2): p. 375-380.
5. Chung, T.-S., L.Y. Jiang, Y. Li, and S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci., 2007. 32(4): p. 483-507.
6. Ghalei, B., K. Sakurai, Y. Kinoshita, K. Wakimoto, Ali P. Isfahani, Q. Song, K. Doitomi, S. Furukawa, H. Hirao, H. Kusuda, S. Kitagawa, and E. Sivaniah, Enhanced selectivity in mixed matrix membranes for CO2 capture through efficient dispersion of amine-functionalized MOF nanoparticles. Nat. Energy, 2017. 2(7).
7. Du, J. and H.-M. Cheng, The Fabrication, Properties, and Uses of Graphene/Polymer Composites. Macromol. Chem. Phys., 2012. 213(10-11): p. 1060-1077.
8. Bachman, J.E., Z.P. Smith, T. Li, T. Xu, and J.R. Long, Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals. Nat. Mater., 2016. 15(8): p. 845-9.
9. Zornoza, B., C. Tellez, J. Coronas, J. Gascon, and F. Kapteijn, Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Micropor. Mesopor. Mat., 2013. 166: p. 67-78.
10. Kim, S. and E. Marand, High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Micropor. Mesopor. Mat., 2008. 114(1-3): p. 129-136.
11. Zornoza, B., C. Téllez, and J. Coronas, Mixed matrix membranes comprising glassy polymers and dispersed mesoporous silica spheres for gas separation. J. Membr. Sci, 2011. 368(1-2): p. 100-109.
12. Valero, M., B. Zornoza, C. Téllez, and J. Coronas, Mixed matrix membranes for gas separation by combination of silica MCM-41 and MOF NH2-MIL-53(Al) in glassy polymers. Micropor. Mesopor. Mat., 2014. 192: p. 23-28.
13. Sorribas, S., B. Zornoza, C. Téllez, and J. Coronas, Mixed matrix membranes comprising silica-(ZIF-8) core–shell spheres with ordered meso–microporosity for natural- and bio-gas upgrading. J. Membr. Sci, 2014. 452: p. 184-192.
14. Kinoshita, Y., K. Wakimoto, A.H. Gibbons, A.P. Isfahani, H. Kusuda, E. Sivaniah, and B. Ghalei, Enhanced PIM-1 membrane gas separation selectivity through efficient dispersion of functionalized POSS fillers. J. Membr. Sci, 2017. 539: p. 178-186.
15. Kim, S., T.W. Pechar, and E. Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination, 2006. 192(1-3): p. 330-339.
16. Huang, G., A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, and B. Ghalei, Pebax/ionic liquid modified graphene oxide mixed matrix membranes for enhanced CO2 capture. J. Membr. Sci, 2018. 565: p. 370-379.
17. Banerjee, R., A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O′Keeffe, and O.M. Yaghi, High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008. 319(5865): p. 939-43.
18. Fairen-Jimenez, D., S.A. Moggach, M.T. Wharmby, P.A. Wright, S. Parsons, and T. Duren, Opening the gate: framework flexibility in ZIF-8 explored by experiments and simulations. J. Am. Chem. Soc., 2011. 133(23): p. 8900-2.
19. Nafisi, V. and M.-B. Hägg, Development of dual layer of ZIF-8/PEBAX-2533 mixed matrix membrane for CO2 capture. J. Membr. Sci, 2014. 459: p. 244-255.
20. Ordoñez, M.J.C., K.J. Balkus, J.P. Ferraris, and I.H. Musselman, Molecular sieving realized with ZIF-8/Matrimid® mixed-matrix membranes. J. Membr. Sci, 2010. 361(1-2): p. 28-37.
21. Song, Q., S.K. Nataraj, M.V. Roussenova, J.C. Tan, D.J. Hughes, W. Li, P. Bourgoin, M.A. Alam, A.K. Cheetham, S.A. Al-Muhtaseb, and E. Sivaniah, Zeolitic imidazolate framework (ZIF-8) based polymer nanocomposite membranes for gas separation. Energy Environ. Sci., 2012. 5(8).
22. Mahdi, E.M. and J.-C. Tan, Mixed-matrix membranes of zeolitic imidazolate framework (ZIF-8)/Matrimid nanocomposite: Thermo-mechanical stability and viscoelasticity underpinning membrane separation performance. J. Membr. Sci, 2016. 498: p. 276-290.
23. Bushell, A.F., M.P. Attfield, C.R. Mason, P.M. Budd, Y. Yampolskii, L. Starannikova, A. Rebrov, F. Bazzarelli, P. Bernardo, J. Carolus Jansen, M. Lanč, K. Friess, V. Shantarovich, V. Gustov, and V. Isaeva, Gas permeation parameters of mixed matrix membranes based on the polymer of intrinsic microporosity PIM-1 and the zeolitic imidazolate framework ZIF-8. J. Membr. Sci, 2013. 427: p. 48-62.
24. Panda, T., K.M. Gupta, J. Jiang, and R. Banerjee, Enhancement of CO2uptake in iso-reticular Co based zeolitic imidazolate frameworks via metal replacement. CrystEngComm, 2014. 16(22): p. 4677-4680.
25. Panchariya, D.K., R.K. Rai, E. Anil Kumar, and S.K. Singh, Core–Shell Zeolitic Imidazolate Frameworks for Enhanced Hydrogen Storage. ACS Omega., 2018. 3(1): p. 167-175.
26. Li, T., J.E. Sullivan, and N.L. Rosi, Design and preparation of a core-shell metal-organic framework for selective CO2 capture. J. Am. Chem. Soc., 2013. 135(27): p. 9984-7.
27. Tang, J., R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, and Y. Yamauchi, Thermal conversion of core-shell metal-organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc., 2015. 137(4): p. 1572-80.
28. Song, Z., F. Qiu, E.W. Zaia, Z. Wang, M. Kunz, J. Guo, M. Brady, B. Mi, and J.J. Urban, Dual-Channel, Molecular-Sieving Core/Shell ZIF@MOF Architectures as Engineered Fillers in Hybrid Membranes for Highly Selective CO2 Separation. Nano Lett., 2017. 17(11): p. 6752-6758.
29. Sánchez-Laínez, J., A. Veiga, B. Zornoza, S.R.G. Balestra, S. Hamad, A.R. Ruiz-Salvador, S. Calero, C. Téllez, and J. Coronas, Tuning the separation properties of zeolitic imidazolate framework core–shell structures via post-synthetic modification. J. Mater. Chem. A, 2017. 5(48): p. 25601-25608.
30. Knebel, A., P. Wulfert-Holzmann, S. Friebe, J. Pavel, I. Strauss, A. Mundstock, F. Steinbach, and J. Caro, Hierarchical Nanostructures of Metal-Organic Frameworks Applied in Gas Separating ZIF-8-on-ZIF-67 Membranes. Chem. Eur. J., 2018. 24(22): p. 5728-5733.
31. Jayachandrababu, K.C., D.S. Sholl, and S. Nair, Structural and Mechanistic Differences in Mixed-Linker Zeolitic Imidazolate Framework Synthesis by Solvent Assisted Linker Exchange and de Novo Routes. J. Am. Chem. Soc., 2017. 139(16): p. 5906-5915.
32. Zhang, J., T. Zhang, K. Xiao, S. Cheng, G. Qian, Y. Wang, and Y. Feng, Novel and Facile Strategy for Controllable Synthesis of Multilayered Core–Shell Zeolitic Imidazolate Frameworks. Cryst. Growth Des, 2016. 16(11): p. 6494-6498.
33. Zhuang, J., L.Y. Chou, B.T. Sneed, Y. Cao, P. Hu, L. Feng, and C.K. Tsung, Surfactant-Mediated Conformal Overgrowth of Core-Shell Metal-Organic Framework Materials with Mismatched Topologies. Small, 2015. 11(41): p. 5551-5.
34. Jayaramulu, K., K.K. Datta, C. Rosler, M. Petr, M. Otyepka, R. Zboril, and R.A. Fischer, Biomimetic Superhydrophobic/Superoleophilic Highly Fluorinated Graphene Oxide and ZIF-8 Composites for Oil-Water Separation. Angew. Chem. Int. Ed. Engl., 2016. 55(3): p. 1178-82.
35. Qian, X., F. Sun, J. Sun, H. Wu, F. Xiao, X. Wu, and G. Zhu, Imparting surface hydrophobicity to metal-organic frameworks using a facile solution-immersion process to enhance water stability for CO2 capture. Nanoscale, 2017. 9(5): p. 2003-2008.
36. Park, K.S., Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O′Keeffe, and O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. U.S.A., 2006. 103(27): p. 10186-10191.
37. Phan, A., C.J. Doonan, F.J. Uribe-Romo, C.B. Knobler, M. O′Keeffe, and O.M. Yaghi, Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res., 2010. 43(1): p. 58-67.
38. Askari, M. and T.-S. Chung, Natural gas purification and olefin/paraffin separation using thermal cross-linkable co-polyimide/ZIF-8 mixed matrix membranes. J. Membr. Sci, 2013. 444: p. 173-183.
39. Sabetghadam, A., B. Seoane, D. Keskin, N. Duim, T. Rodenas, S. Shahid, S. Sorribas, C. Le Guillouzer, G. Clet, C. Tellez, M. Daturi, J. Coronas, F. Kapteijn, and J. Gascon, Metal Organic Framework Crystals in Mixed-Matrix Membranes: Impact of the Filler Morphology on the Gas Separation Performance. Adv. Funct. Mater., 2016. 26(18): p. 3154-3163.
40. Cravillon, J., S. Münzer, S.-J. Lohmeier, A. Feldhoff, K. Huber, and M. Wiebcke, Rapid Room-Temperature Synthesis and Characterization of Nanocrystals of a Prototypical Zeolitic Imidazolate Framework. Chem. Mater., 2009. 21(8): p. 1410-1412.
41. Kida, K., M. Okita, K. Fujita, S. Tanaka, and Y. Miyake, Formation of high crystalline ZIF-8 in an aqueous solution. CrystEngComm, 2013. 15(9).
42. Shao, J., Z. Wan, H. Liu, H. Zheng, T. Gao, M. Shen, Q. Qu, and H. Zheng, Metal organic frameworks-derived Co3O4 hollow dodecahedrons with controllable interiors as outstanding anodes for Li storage. J. Mater. Chem. A, 2014. 2(31): p. 12194-12200.
43. Torad, N.L., M. Hu, Y. Kamachi, K. Takai, M. Imura, M. Naito, and Y. Yamauchi, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. (Camb.), 2013. 49(25): p. 2521-3.
44. Lin, R., B. Villacorta Hernandez, L. Ge, and Z. Zhu, Metal organic framework based mixed matrix membranes: an overview on filler/polymer interfaces. J. Mater. Chem. A, 2018. 6(2): p. 293-312.
45. Deng, Y.H., J.T. Chen, C.H. Chang, K.S. Liao, K.L. Tung, W.E. Price, Y. Yamauchi, and K.C. Wu, A Drying-Free, Water-Based Process for Fabricating Mixed-Matrix Membranes with Outstanding Pervaporation Performance. Angew. Chem. Int. Ed. Engl., 2016. 55(41): p. 12793-6.
46. Liu, G., A. Cadiau, Y. Liu, K. Adil, V. Chernikova, I.D. Carja, Y. Belmabkhout, M. Karunakaran, O. Shekhah, C. Zhang, A.K. Itta, S. Yi, M. Eddaoudi, and W.J. Koros, Enabling Fluorinated MOF-Based Membranes for Simultaneous Removal of H2 S and CO2 from Natural Gas. Angew. Chem. Int. Ed. Engl., 2018. 57(45): p. 14811-14816.
47. Wu, X., W. Liu, H. Wu, X. Zong, L. Yang, Y. Wu, Y. Ren, C. Shi, S. Wang, and Z. Jiang, Nanoporous ZIF-67 embedded polymers of intrinsic microporosity membranes with enhanced gas separation performance. J. Membr. Sci, 2018. 548: p. 309-318.
48. Kaur, G., R.K. Rai, D. Tyagi, X. Yao, P.-Z. Li, X.-C. Yang, Y. Zhao, Q. Xu, and S.K. Singh, Room-temperature synthesis of bimetallic Co–Zn based zeolitic imidazolate frameworks in water for enhanced CO2 and H2 uptakes. J. Mater. Chem. A, 2016. 4(39): p. 14932-14938.
49. Nordin, N.A.H.M., A.F. Ismail, A. Mustafa, R.S. Murali, and T. Matsuura, The impact of ZIF-8 particle size and heat treatment on CO2/CH4separation using asymmetric mixed matrix membrane. RSC Adv., 2014. 4(94): p. 52530-52541.
50. Zhang, C., Y. Dai, J.R. Johnson, O. Karvan, and W.J. Koros, High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci, 2012. 389: p. 34-42.
51. Md. Nordin, N.A.H., A.F. Ismail, A. Mustafa, R.S. Murali, and T. Matsuura, Utilizing low ZIF-8 loading for an asymmetric PSf/ZIF-8 mixed matrix membrane for CO2/CH4 separation. RSC Adv., 2015. 5(38): p. 30206-30215.
52. An, H., S. Park, H.T. Kwon, H.-K. Jeong, and J.S. Lee, A new superior competitor for exceptional propylene/propane separations: ZIF-67 containing mixed matrix membranes. J. Membr. Sci, 2017. 526: p. 367-376.
53. Lin, W.H. and T.S. Chung, Gas permeability, diffusivity, solubility, and aging characteristics of 6FDA-durene polyimide membranes. J. Membr. Sci, 2001. 186(2): p. 183-193.
指導教授 張博凱(Bor Kae Chang) 審核日期 2019-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明