博碩士論文 103324063 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:3.138.134.149
姓名 林佳樺(Chia-Hua Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 二氧化釩薄膜之動態電阻特性研究
(Dynamic resistance characteristic of Vanadium oxide thin film)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
本論文研究之目的為探討二氧化釩薄膜中動態電阻機制及特性。 第一部份討論在室溫下的二氧化釩薄膜之導電機制,將二氧化釩薄膜在不同溫度進行熱處理,透過XPS分析可知,二氧化釩薄膜經過500 oC熱處理溫度,有最高的V5+離子濃度,透過控制不同熱處理溫度可以改變V5+離子濃度。在熱處理過程中,會發生V4+離子被V5+離子所取代,在本研究稱之為取代反應。此V5+離子取代V4+離子反應會產生自由電子而有n-type特性,進而提高二氧化釩薄膜的載子濃度,使得二氧化釩薄膜具有透明導電薄膜之特性。 第二部分則是提出新穎的動態電阻機制,利用二氧化釩薄膜對溫度的高敏感度性質,在二氧化釩薄膜施加溫度過程,可以量測到具有顯著動態電阻特性,由文獻回顧可知此現象眾說紛紜無法完整解釋此現象。 實驗結果發現,在施加溫度的情況下,二氧化釩薄膜在67 oC時,電阻變化兩個數量級且此變化為可逆的現象,即為動態電阻轉變的現象。 經由熱處理500 oC的二氧化釩薄膜甚至可以在50 oC會有明顯的動態電阻轉變,由於在氧氣環境中所濺鍍製備的二氧化釩薄膜會生成不同價態的釩離子,利用XPS測得V5+離子佔二氧化釩薄膜的離子中比例與電阻轉變的臨界溫度變化量成正比,當V5+離子取代V4+離子時,因V5+的離子鍵比V4+離子鍵短而改變位於晶格中心的V與旁邊6個O配位體之間在能帶上的間距,造成能隙縮減,進而有降低電阻轉變臨界溫度的變化。 因此,價數比例與鍵長會是決定動態電阻特性的關鍵性質,經過交叉驗證後提出一個創新且完整的動態電阻機制。
摘要(英) Abstract
In this study, dynamic resistance mechanism and characteristics of vanadium oxide thin films are discussed. At first, discusses the conduction mechanism of vanadium oxide thin film at room temperatures. According to X-ray photoelectron spectroscopy analysis, the vanadium oxide thin film has the highest V5+ ion concentration after annealing temperature at 500 oC. The V5+ ion for the V4+ ion produces free electrons and has n-type characteristic, thereby increasing the carrier concentration of the vanadium oxide film. So the vanadium oxide thin film has the characteristics of a transparent conductive film. Secondly, propose a novel dynamic resistance mechanism. The temperature sensitive property of vanadium oxide thin film was manipulated to form. The remarkable dynamic resistance characteristics can also observe in this vanadium oxide thin film. But there is no current mechanism can be used to explain the phenomenon. The experimental results show that the vanadium oxide thin film changes at two orders of magnitude at 67 °C, which is the phenomenon of dynamic resistance transition. Annealing temperature at 500 °C of vanadium oxide thin film can even have a significant dynamic resistance transition at 50 °C. Since the vanadium oxide thin film prepared by sputtering in an oxygen environment generates vanadium ions of different valence states, V5+ is measured by X-ray photoelectron spectroscopy analysis. The proportion of ions in the vanadium oxide thin film is proportional to the critical temperature change of the resistance transition. When theV5+-V4+ substitution, the V5+ ion bond is shorter than the V4+ ion bond and changes to the V at the center of the lattice. The spacing between the oxygen ligands on the energy band causes the energy gap to decrease, which in turn reduces the change in the critical temperature of the resistance transition. Therefore, the valence ratio and bond length are the key properties that determine the dynamic resistance characteristics.
關鍵字(中) ★ 二氧化釩
★ 動態電阻
★ 透明導電薄膜
關鍵字(英) ★ Vanadium oxide
★ Dynamic resistance
★ n-type
★ transparent conductive film
論文目次 Table of contents
中文摘要……………………………… II
Abstract……………………………… III
Table of contents……………………………… IV
List of figures ………………………………V
List of tables……………………………… VII
Chapter 1 Introduction……………………………… 1
1.1 Transparent conductive oxide……………………………… 1
1.2 Transparent conductive vanadium dioxide………………… 3
1.3 Crystal structure of vanadium dioxide………………………… 6
1.4 Bandgap transition of vanadium dioxide…………………… 7
1.5 Preparation technology of vanadium dioxide………………… 9
1.6 Basic theory of vanadium dioxide…………………………… 10
Chapter 2 Motivation……………………………… 12
Chapter 3 Experimental procedure……………………………… 14
3.1 RF magnetron sputtering system ………………………………14
3.2 Fabrication of TiO2 thin films……………………………… 16
3.3 Fabrication of VO2 thin films ………………………………17
3.4 Measurement of phase transition temperature.... 18
3.5 Instrument analysis……………………………… 20
Chapter 4 Mechanism for dynamic resistance at different phase transition temperature ………………………………………….23
4.1 Electrical Property of sputtered TiO2 thin films.......... 23
4.2 XPS analysis on sputtered TiO2 thin films ………………………27
4.3 Hall measurement analysis of VO2 thin films………………… 35
4.4 Electrical properties with measuring temperature of VO2 thin films……………………………… 38
4.5 XRD analysis of VO2 thin films……………………………… 41
4.6 Bandgap of VO2 thin films……………………………… 44
4.7 Mechanism of dynamic resistance……………………………… 46
Chapter 5 Summary……………………………… 52
Reference……………………………… 53
參考文獻 Reference
1. T. Minami, Semiconductor Science and Technology
20, S35–S44 (2005).
2. A. Chen, K. Zhu, H. Zhong, Q. Shao and G. Ge, Solar Energy Materials and Solar Cells 120, 157-162 (2014).
3. K. Z. Aqing Chen, Huicai Zhong, Qingyi Shao, Guanglu Ge, Solar Energy Materials & Solar Cells 120, 157-162 (2014).
4. K. H. Zhang, K. Xi, M. G. Blamire and R. G. Egdell, J Phys Condens Matter 28 (38), 383002 (2016).
5. D.-p. Zhang, M.-d. Zhu, Y. Liu, K. Yang, G.-x. Liang, Z.-h. Zheng, X.-m. Cai and P. Fan, Journal of Alloys and Compounds 659, 198-202 (2016).
6. Y. Cui, Y. Ke, C. Liu, Z. Chen, N. Wang, L. Zhang, Y. Zhou, S. Wang, Y. Gao and Y. Long, Joule 2 (9), 1707-1746 (2018).
7. J. F. Wager, APPLIED PHYSICS 300 (5623), 1245-1246 (2003).
8. A. H. Ali, Z. Hassan and A. Shuhaimi, Applied Surface Science 443, 544-547 (2018).
9. G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri and A. J. Heeger, Nature 357 (6378), 477-479 (1992).
10. W. R. C. Rene ́ J. Nussbaumer, * Paul Smith, Theo Tervoort, 288, 44–49 (2003).
11. W. K. H. J. FRENCK, M. KUHR AND R. KASSING 201 327 335 ((1991)).
12. K. P. H. Tang, R. Sanjines, F. Levy, 26-27, 71-75 (1995).
13. N. R. N. Kai Zhu, Alexander Miedaner, and Arthur J. Frank*, 7 ( 2006).
14. A. J. Frank, N. Kopidakis and J. v. d. Lagemaat, Coordination Chemistry Reviews 248 (13-14), 1165-1179 (2004).
15. K. Y.-Z. Y. Leprince-Wang Surface and Coatings Technology 140, 155 160 (2001).
16. M. Horprathum, P. Eiamchai, P. Chindaudom, A. Pokaipisit and P. Limsuwan, Procedia Engineering 32, 676-682 (2012).
17. R. R. M. de Sousa, P. S. Sato, B. C. Viana, C. Alves, A. Nishimoto and P. A. P. Nascente, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 33 (4), 041502 (2015).
18. Y. S. Liu, Y. H. Lin, Y. S. Wei and C. Y. Liu, Journal of Applied Physics 111 (4), 043103 (2012).
19. A. T. Iancu, M. Logar, J. Park and F. B. Prinz, ACS Appl Mater Interfaces 7 (9), 5134-5140 (2015).
20. M. K. N. T. Bak, L. R. Sheppard, and J. Nowotny, J. Phys. Chem. C 112, 13248–13257 (2008).
21. B. H. L. Q. Mai, T. Hu, W. Chen, and E. D. Gu, Journal of Physical chemistry B 110, 19083-19086 (2006).
22. L. Zhao, L. Miao, S. Tanemura, J. Zhou, L. Chen, X. Xiao and G. Xu, Thin Solid Films 543, 157-161 (2013).
23. Y. Zhan, X. Xiao, Y. Lu, Z. Cao, S. Qi, C. Huan, C. Ye, H. Cheng, J. Shi, X. Xu and G. Xu, Surfaces and Interfaces 9, 173-181 (2017).
24. L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou and Z. Y. Wu, Nano Lett 14 (7), 4036-4043 (2014).
25. S. Wang, S. Yu, M. Lu, M. Liu and L. Zuo, Journal of Electronic Materials 46 (4), 2153-2157 (2016).
26. T. C. W.Burkhardt, S.Franke,W.Kriegseis,D.Meister,B.K.Meyer,W.Niessner, D.Schalch,A.Scharmann, Thin solid films 402, 226-231 (2002).
27. P. Markov, R. E. Marvel, H. J. Conley, K. J. Miller, R. F. Haglund and S. M. Weiss, ACS Photonics 2 (8), 1175-1182 (2015).
28. X. Liu, S.-W. Wang, F. Chen, L. Yu and X. Chen, Journal of Physics D: Applied Physics 48 (26), 265104 (2015).
29. D. Brassard, S. Fourmaux, M. Jean-Jacques, J. C. Kieffer and M. A. El Khakani, Applied Physics Letters 87 (5), 051910 (2005).
30. Q. Lu, S. R. Bishop, D. Lee, S. Lee, H. Bluhm, H. L. Tuller, H. N. Lee and B. Yildiz, Advanced Functional Materials 28 (34), 1803024 (2018).
31. V. N. A. a. V. A. Klimov, Physics of the Solid State 51, 2235-2240 (2009).
32. Z. Hiroi, Progress in Solid State Chemistry 43 (1-2), 47-69 (2015).
33. X. L. Weimin Wang, Ming Zhao and Changsheng Tian, Engineering Materials 336-338, 743-745 (2007).
34. M. Abdel-Rahman, S. Ilahi, M. F. Zia, M. Alduraibi, N. Debbar, N. Yacoubi and B. Ilahi, Infrared Physics & Technology 71, 127-130 (2015).
35. A. Bi and J. Zhu, Journal of Experimental Nanoscience 8 (1), 46-53 (2013).
36. S. Ni, H. Zeng and X. Yang, Journal of Nanomaterials 2011, 1-4 (2011).
37. Y. Y. Luo, L. Q. Zhu, Y. X. Zhang, S. S. Pan, S. C. Xu, M. Liu and G. H. Li, Journal of Applied Physics 113 (18), 183520 (2013).
38. H. Liu, D. Wan, A. Ishaq, L. Chen, B. Guo, S. Shi, H. Luo and Y. Gao, ACS Appl Mater Interfaces 8 (12), 7884-7890 (2016).
39. X.-Y. Peng, B. Wang, J. Teng, J. B. Kana Kana and X. Zhang, Journal of Applied Physics 114 (16), 163103 (2013).
40. a. K. D. Luke A. Sweatlock, OPTICS EXPRESS 20 (2012).
41. R. P. C. Vance R. Morrison, Kunal L. Tiwari, Ali Hendaoui, Andrew Bruhács, Mohamed Chaker, Bradley J. Siwick,, SCIENCE 346 (6208) (2014).
42. T. L. Cocker, L. V. Titova, S. Fourmaux, G. Holloway, H. C. Bandulet, D. Brassard, J. C. Kieffer, M. A. El Khakani and F. A. Hegmann, Physical Review B 85 (15) (2012).
43. V. G. Golubev, V. Y. Davydov, N. F. Kartenko, D. A. Kurdyukov, A. V. Medvedev, A. B. Pevtsov, A. V. Scherbakov and E. B. Shadrin, Applied Physics Letters 79 (14), 2127-2129 (2001).
44. T. C. Koethe, Z. Hu, M. W. Haverkort, C. Schussler-Langeheine, F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh, H. J. Lin, C. T. Chen and L. H. Tjeng, Phys Rev Lett 97 (11), 116402 (2006).
45. A. Tanaka, Journal of the Physical Society of Japan 73 (1), 152-162 (2004).
46. J. Y. Suh, R. Lopez, L. C. Feldman and R. F. Haglund, Journal of Applied Physics 96 (2), 1209-1213 (2004).
47. P. Zhang, K. Jiang, Q. Deng, Q. You, J. Zhang, J. Wu, Z. Hu and J. Chu, Journal of Materials Chemistry C 3 (19), 5033-5040 (2015).
48. N. B. Aetukuri, A. X. Gray, M. Drouard, M. Cossale, L. Gao, A. H. Reid, R. Kukreja, H. Ohldag, C. A. Jenkins, E. Arenholz, K. P. Roche, H. A. Dürr, M. G. Samant and S. S. P. Parkin, Nature Physics 9 (10), 661-666 (2013).
49. B. G. Chae, H. T. Kim and S. J. Yun, Electrochemical and Solid-State Letters 11 (6), D53 (2008).
50. M. Wan, M. Xiong, N. Li, B. Liu, S. Wang, W.-Y. Ching and X. Zhao, Applied Surface Science 410, 363-372 (2017).
51. R. Lopez, L. A. Boatner, T. E. Haynes, L. C. Feldman and R. F. Haglund, Journal of Applied Physics 92 (7), 4031-4036 (2002).
52. B. Rajeswaran and A. M. Umarji, AIP Advances 6 (3), 035215 (2016).
53. L. H. T. J.-H. Park, PHYSICAL REVIEW B 61.
54. L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou and Z. Y. Wu, Nano Letters 14 (7), 4036-4043 (2014).
55. D. I. Khomskii and T. Mizokawa, Phys Rev Lett 94 (15), 156402 (2005).
56. M. Pan, H. Zhong, S. Wang, J. Liu, Z. Li, X. Chen and W. Lu, Journal of Crystal Growth 265 (1-2), 121-126 (2004).
57. N. Y. Ge Li, Jinhua Li, Xiaoshuang Chen, Sensors and Actuators A 126, 430-435 (2006).
58. M.-d. Z. Dong-ping Zhang, Yi Liu, Kai Yang, Guang-xing Liang, Zhuang-hao Zheng, Xing-min Cai, Ping Fan Journal of Alloys and Compounds 659, 198-202 (2016).
59. A. K. K.B. Sundaram, Thin Solid Films 295, 87-91 (1997).
60. S. Thorsteinsson, F. Wang, D. H. Petersen, T. M. Hansen, D. Kjaer, R. Lin, J. Y. Kim, P. F. Nielsen and O. Hansen, Rev Sci Instrum 80 (5), 053902 (2009).
61. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi and H. Hosono, Nature 389 (6654), 939-942 (1997).
62. C. N. Berglund and H. J. Guggenheim, Physical Review 185 (3), 1022-1033 (1969).
63. J. Jian, W. Zhang, C. Jacob, A. Chen, H. Wang, J. Huang and H. Wang, Applied Physics Letters 107 (10), 102105 (2015).
64. A. W. S. A. T. A. BITHER, Inorganic Chemistry 8 (1968).
65. S. Lee, T. L. Meyer, C. Sohn, D. Lee, J. Nichols, D. Lee, S. S. A. Seo, J. W. Freeland, T. W. Noh and H. N. Lee, APL Materials 3 (12), 126109 (2015).
66. J. Jeong, N. Aetukuri, T. Graf, T. D. Schladt, M. G. Samant and S. S. Parkin, Science 339 (6126), 1402-1405 (2013).
67. J. B. GOODENOUGH, Journal of solid state chemistry 3, 490-500 (1971).
指導教授 劉正毓(Cheng-Yi Liu) 審核日期 2019-8-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明