博碩士論文 106324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:47 、訪客IP:3.146.221.144
姓名 吳承洋(Cheng-Yang Wu)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 SiO2@AIZS奈米殼層結構合成及其光催化產氫研究
(Photocatalytic hydrogen production based on SiO2@AIZS core-shell particles)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質
★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池★ 奈米結構之Au/MnO2複合陰極觸媒材料
★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析
★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究★ IMPS於Ag-In-S半導體薄膜之分析與應用
★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究
★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質
★ 電化學分解水之電極材料製備與效率探討★ 金屬氧化物與硫化物異質結構薄膜之電化學研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 利用表面電漿共振效應提升光觸媒的活性是近年來熱門的議題,我們過去的研究成功利用金銀奈米粒子的表面電漿共振效應提升ZnIn2S4的光催化產氫效率48,49,因AgInS2-ZnS (AIZS) 固態溶液具有可調控能隙的特性,所以本研究使用AIZS作為包覆二氧化矽外殼的金銀奈米粒子(GSNS@SiO2)的材料,但是GSNS@SiO2合成不易,因此我們主要先以二氧化矽作為AIZS的包覆對象。
我們使用直接加熱法在有機溶劑環境下將AIZS包覆在二氧化矽表面,改變溫度及組成兩個重要的合成參數來探討其對包覆結果的影響。此外,為了提升SiO2@AIZS在有機溶劑下合成之親水性,我們使用表面離子基交換對光觸媒表面進行改質,結果顯示親水性有顯著地提升,且產氫效率也大幅上升。最後將合成法套用在GSNS@SiO2上,然而因GSNS@SiO2容易形成聚集的特性,以及二氧化矽與GSNS@SiO2顆粒大小的差異,使包覆的效果不如預期。應用表面電漿共振效應提升AIZS的產氫效率雖然仍未完善,但對於合成殼層結構(GSNS@dielectric@photocatalyst)有了進一步的了解。
摘要(英) Enhancing photocatalytic activities by surface plasmon resonance effect has been a popular issue in recent years. In our past research, we successfully apply surface plasmon resonance from gold-silver nanoparticles (GSNS NPs) to promote photocatalytic hydrogen production efficiency of ZnIn2S4. Due to a tunable band gap of AgInS2-ZnS (AIZS), AIZS solid solutions are used as the coating material to cover silica-coated gold-silver nanoparticles (GSNS@SiO2). Because of difficult synthesis of GSNS@SiO2, silica serves as the main coating target of AIZS.
We used heating up method to coat AIZS onto silica surface in organic solvents, while two important parameters, temperature and composition, were varied to discuss its effect to coating results. Furthermore, in order to increase hydrophilicity of SiO2@AIZS synthesized in organics, we applied surface ligand exchange to do modification on its surface. Results of modification showed not only hydrophilicity obviously improved but hydrogen production efficiency increased substantially. Finally, synthesis method was carried out on GSNS@SiO2. However, due to easier aggregation of GSNS@SiO2 and difference of particle size between SiO2 and GSNS@SiO2, consequence of coating on GSNS@SiO2 was not as expected. Although it took time to study enhancing AIZS efficiency by surface plasmon resonance, our facile procedure paved the way to synthesize core-shell structure GSNS@dielectric@photocatalyst.
關鍵字(中) ★ 固態溶液
★ 殼層結構
★ 光觸媒產氫
關鍵字(英) ★ Solid solutions
★ Core-shell
★ Photocatalytic hydrogen production
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VIII
表目錄 XIII
第一章 緒論 1
1-1 前言 1
1-2 光觸媒產氫 3
1-3 研究動機 4
第二章 文獻回顧 5
2-1 光觸媒分解水產氫 5
2-2 光觸媒材料 8
2-3 二氧化矽奈米粒子合成與表面改質 12
2-4 (AgIn)xZn2(1-x)S2光觸媒 15
2-5 光觸媒表面離子基交換 22
2-6 表面電漿共振效應 26
2-7 GSNS@SiO2@ZnIn2S4 28
第三章 實驗方法及步驟 30
3-1 實驗藥品 30
3-2 分析與實驗儀器 34
3-3 實驗步驟 37
3-3-1 溶膠-凝膠法製備二氧化矽粉體及MPS表面改質 37
3-3-2 定組成SiO2@AIZS合成溫度最佳化 37
3-3-3 定溫下SiO2@(AgIn)xZn2(1-x)S2元素比例最佳化 38
3-3-4 光觸媒粉體溶液產氫速率量測 39
3-3-5 SiO2@AIZS表面離子基交換 42
3-3-6 奈米殼層結構合成 42
第四章 結果與討論 46
4-1 AIZS包覆於MPS改質的二氧化矽 46
4-2 AIZS包覆在二氧化矽前後比較 51
4-2-1 外觀形貌比較 51
4-2-2 結晶性比較 52
4-2-3 產氫效率比較 53
4-3 在不同溫度下合成SiO2@AIZS 54
4-3-1 SiO2@AIZS成分分析 54
4-3-2 表面均質性 55
4-3-3 結晶性 57
4-3-4 產氫效率 58
4-4 以不同比例合成SiO2@(AgIn)xZn2(1-x)S2 60
4-4-1 表面均質性 60
4-4-2 結晶性 61
4-4-3 光學性質分析 64
4-4-4 產氫效率 66
4-5 SiO2@AIZS表面離子基交換 72
4-6 GSNS@SiO2@AIZS套用SiO2@AIZS合成 77
4-6-1 GSNS@SiO2@AIZS 成分分析 77
4-6-2 形貌分析 79
4-6-3 結晶度 80
4-6-4 產氫效率 82
第五章 結論與未來展望 83
附錄 85
奈米殼層結構(GSNS, GSNS@SiO2, GSNS@SnO2, GSNS=Ag@Au)的合成 85
SnO2 二氧化錫奈米粒子合成 85
銀奈米粒子合成 86
Gold-silver nanoshells, GSNS金銀奈米粒子合成 87
GSNS@SiO2二氧化矽外殼金銀奈米粒子合成 89
GSNS@SnO2二氧化錫金銀奈米粒子合成 90
GSNS、GSNS@SiO2、GSNS@SnO2的UV-Vis比較 91
參考文獻 92
參考文獻 1. Patterson, A.J.P.r., The Scherrer formula for X-ray particle size determination. 1939. 56(10): p. 978.
2. Fujishima, A. and K.J.n. Honda, Electrochemical photolysis of water at a semiconductor electrode. 1972. 238(5358): p. 37.
3. Nobbs, J.H.J.R.o.P.i.C. and R. Topics, Kubelka—Munk theory and the prediction of reflectance. 1985. 15(1): p. 66-75.
4. Olekseyuk, I., et al., Phase equilibria in the AgGaS2–ZnS and AgInS2–ZnS systems. 2001. 325(1-2): p. 204-209.
5. Kudo, A., I. Tsuji, and H.J.C.c. Kato, AgInZn7S9 solid solution photocatalyst for H2 evolution from aqueous solutions under visible light irradiation. 2002(17): p. 1958-1959.
6. Tsuji, I., et al., Photocatalytic H2 evolution reaction from aqueous solutions over band structure-controlled (AgIn)xZn2(1-x)S2 solid solution photocatalysts with visible-light response and their surface nanostructures. 2004. 126(41): p. 13406-13413.
7. Yang, L. and B.J.J.A. Kruse, Revised Kubelka–Munk theory. I. Theory and application. 2004. 21(10): p. 1933-1941.
8. Tsuji, I., H. Kato, and A.J.A.C. Kudo, Visible‐light‐induced H2 evolution from an aqueous solution containing sulfide and sulfite over a ZnS–CuInS2–AgInS2 solid‐solution photocatalyst. 2005. 117(23): p. 3631-3634.
9. Tsuji, I., H. Kato, and A.J.C.o.M. Kudo, Photocatalytic hydrogen evolution on ZnS−CuInS2−AgInS2 solid solution photocatalysts with wide visible light absorption bands. 2006. 18(7): p. 1969-1975.
10. Torimoto, T., et al., Facile synthesis of ZnS−AgInS2 solid solution nanoparticles for a color-adjustable luminophore. 2007. 129(41): p. 12388-12389.
11. Kudo, A. and Y.J.C.S.R. Miseki, Heterogeneous photocatalyst materials for water splitting. 2009. 38(1): p. 253-278.
12. Nag, A., et al., Metal-free Inorganic Ligands for Colloidal Nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS32-, OH-, and NH2- as Surface Ligands. Journal of the American Chemical Society, 2011. 133(27): p. 10612-10620.
13. Song, B.Y., Y. Eom, and T.G.J.A.S.S. Lee, Removal and recovery of mercury from aqueous solution using magnetic silica nanocomposites. 2011. 257(10): p. 4754-4759.
14. Wu, H., et al., Design and fabrication of an albedo insensitive analog sun sensor. 2011. 25: p. 527-530.
15. Cushing, S.K., et al., Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. 2012. 134(36): p. 15033-15041.
16. Monshi, A., et al., Modified Scherrer equation to estimate more accurately nano-crystallite size using XRD. 2012. 2(3): p. 154-160.
17. Deng, D.W., et al., Highly luminescent water-soluble quaternary Zn-Ag-In-S quantum dots for tumor cell-targeted imaging. Physical Chemistry Chemical Physics, 2013. 15(14): p. 5078-5083.
18. Hou, W. and S.B.J.A.F.M. Cronin, A review of surface plasmon resonance‐enhanced photocatalysis. 2013. 23(13): p. 1612-1619.
19. Lin, P.-C., et al., Enhanced photocatalytic hydrogen production over In-rich (Ag–In–Zn) S particles. 2013. 38(20): p. 8254-8262.
20. Mao, B.D., et al., Study of the Partial Ag-to-Zn Cation Exchange in AgInS2/ZnS Nanocrystals. Journal of Physical Chemistry C, 2013. 117(1): p. 648-656.
21. Mourdikoudis, S. and L.M.J.C.o.M. Liz-Marzan, Oleylamine in nanoparticle synthesis. 2013. 25(9): p. 1465-1476.
22. Takahashi, T., et al., Plasmon-Enhanced Photoluminescence and Photocatalytic Activities of Visible-Light-Responsive ZnS-AgInS2 Solid Solution Nanoparticles. Journal of Physical Chemistry C, 2013. 117(6): p. 2511-2520.
23. Yang, X.Y., et al., Facile Synthesis of Luminescent AgInS2-ZnS Solid Solution Nanorods. Small, 2013. 9(16): p. 2689-2695.
24. Zhang, S., et al., Thiol modified Fe3O4@ SiO2 as a robust, high effective, and recycling magnetic sorbent for mercury removal. 2013. 226: p. 30-38.
25. Gabka, G., et al., A Simple Route to Alloyed Quaternary Nanocrystals Ag-In-Zn-S with Shape and Size Control. Inorganic Chemistry, 2014. 53(10): p. 5002-5012.
26. Li, C.H., et al., In Situ Growth of Hollow Gold-Silver Nanoshells within Porous Silica Offers Tunable Plasmonic Extinctions and Enhanced Colloidal Stability. Acs Applied Materials & Interfaces, 2014. 6(22): p. 19943-19950.
27. Torimoto, T., T. Kameyama, and S. Kuwabata, Photofunctional Materials Fabricated with Chalcopyrite-Type Semiconductor Nanoparticles Composed of AgInS2 and Its Solid Solutions. Journal of Physical Chemistry Letters, 2014. 5(2): p. 336-347.
28. Wang, X., et al., Cu2ZnSnSe4 nanocrystals capped with S2- by ligand exchange: utilizing energy level alignment for efficiently reducing carrier rec ombination. Nanoscale Research Letters, 2014. 9: p. 7.
29. Jagadeeswararao, M., et al., Visible light-induced hydrogen generation using colloidal (ZnS)(0.4)(AgInS2)(0.6) nanocrystals capped by S2- ions. Journal of Materials Chemistry A, 2015. 3(16): p. 8276-8279.
30. Kameyama, T., et al., Controlling the Electronic Energy Structure of ZnS-AgInS2 Solid Solution Nanocrystals for Photoluminescence and Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2015. 119(44): p. 24740-24749.
31. Liu, L.M., et al., Size-dependent ligand exchange of colloidal CdSe nanocrystals with S2- ions. RSC Advances, 2015. 5(110): p. 90570-90577.
32. Peng, Y., et al., Effects of surfactants on visible-light-driven photocatalytic hydrogen evolution activities of AgInZn7S9 nanorods. Applied Surface Science, 2015. 358: p. 485-490.
33. Kundu, S. and A.J.C.r. Patra, Nanoscale strategies for light harvesting. 2016. 117(2): p. 712-757.
34. Li, C.H., et al., Plasmonically Enhanced Photocatalytic Hydrogen Production from Water: The Critical Role of Tunable Surface Plasmon Resonance from Gold-Silver Nanoshells. Acs Applied Materials & Interfaces, 2016. 8(14): p. 9152-9161.
35. Rao, C., et al., Solar photochemical and thermochemical splitting of water. 2016. 374(2061): p. 20150088.
36. Sun, L., P. Chen, and L. Lin, Enhanced Molecular Spectroscopy via Localized Surface Plasmon Resonance, in Applications of Molecular Spectroscopy to Current Research in the Chemical and Biological Sciences. 2016, IntechOpen.
37. Torimoto, T., et al., Controlling Shape Anisotropy of ZnS-AgInS2 Solid Solution Nanoparticles for Improving Photocatalytic Activity. Acs Applied Materials & Interfaces, 2016. 8(40): p. 27151-27161.
38. Chen, S., T. Takata, and K.J.N.R.M. Domen, Particulate photocatalysts for overall water splitting. 2017. 2(10): p. 17050.
39. Christoforidis, K.C. and P.J.C. Fornasiero, Photocatalytic hydrogen production: a rift into the future energy supply. 2017. 9(9): p. 1523-1544.
40. Han, Y., et al., Unraveling the Growth Mechanism of Silica Particles in the Stöber Method: In Situ Seeded Growth Model. 2017. 33(23): p. 5879-5890.
41. Huang, T., et al., Hybrid of AgInZnS and MoS2 as efficient visible-light driven photocatalyst for hydrogen production. International Journal of Hydrogen Energy, 2017. 42(17): p. 12254-12261.
42. Low, J., et al., Heterojunction photocatalysts. 2017. 29(20): p. 1601694.
43. Wang, M., et al., Effects of sacrificial reagents on photocatalytic hydrogen evolution over different photocatalysts. 2017. 52(9): p. 5155-5164.
44. Joy, J., J. Mathew, and S.C.J.I.J.o.H.E. George, Nanomaterials for photoelectrochemical water splitting–review. 2018. 43(10): p. 4804-4817.
45. Kameyama, T., et al., Enhanced Photocatalytic Activity of Zn-Ag-In-S Semiconductor Nanocrystals with a Dumbbell-Shaped Heterostructure. Journal of Physical Chemistry C, 2018. 122(25): p. 13705-13715.
46. Kobosko, S.M. and P.V.J.T.J.o.P.C.C. Kamat, Indium-Rich AgInS2–ZnS Quantum Dots—Ag-/Zn-Dependent Photophysics and Photovoltaics. 2018. 122(26): p. 14336-14344.
47. 林伯璋, ZnS的低溫相轉移與Ag-In-Zn-S固態溶液的光化學性質, 2013, 國立中正大學
48. 劉思屏, 微波水熱法製備SiO2@ZnIn2S4奈米粒子及其光催化產氫研究, 2016, 國立中央大學
49. 黃彥禎, 利用微波水熱法提升SiO2@ZnIn2S4奈米光觸媒表面均質與結晶性及其光催化產氫研究, 2018, 國立中央大學
50. M.J. Mayo, A. Suresh and W.D. Porter, Thermodynamics for nanosystems: Grain and particle-size dependent phase diagrams. Advanced Material Scienece, 2003. 5: p. 100-109.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明