博碩士論文 106324015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:54.152.5.73
姓名 郭安哲(An-Zhe Guo)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超音波噴塗技術結合多通道注射幫浦進料調控系統製備混合鹵素鈣鈦礦太陽能電池
(Fabrication of Mixed Halide Perovskite Solar Cells through Ultrasonic Spray Deposition Technique Combined Multi-Channel Pumping Control System)
相關論文
★ 自組裝嵌段共聚高分子/小分子混成奈米浮閘極記憶體:元件製備及效能評估★ 硫碳鏈聯噻吩環小分子半導體及高介電常數TiOX/SiOX介電層製備低電壓場效應光電晶體元件
★ 高介電常數TiOX/SiOX介電層製備低電壓場效應 電晶體元件★ 利用可溶液製程之含硫碳鏈聯噻吩小分子製作高效能有機場效應電晶體
★ 以噴塗技術沉積有機半導體薄膜:形貌分析及其於有機場效應電晶體元件應用★ 利用溶液製程製作不同次結構之併環噻吩小分子高效能有機場效應電晶體
★ 利用超音波噴塗技術製備鈣鈦礦薄膜於太陽能 電池元件之應用★ 利用溶液剪切力塗佈法製作高效能DTTRQ小分子 N 型有機場效電晶體元件
★ 用於高性能n型有機薄膜晶體管的溶液 - 二亞甲基取代的醌基二炔基噻吩(DTDSTQ)基小分子★ 利用溶液剪切力塗佈法製備高分子與小分子混摻之有機場效電晶體元件
★ 利用兩步驟超音波噴塗技術製備平面型p-i-n結構鈣鈦礦太陽能電池元件之應用★ 透明氧化物薄膜電晶體與電晶體式記憶體之分析與應用
★ 以含硫碳鏈並?吩環小分子半導體材料利用溶液剪切力塗佈法製作高性能有機場效應電晶體★ 溶液剪切力 法製備醌型噻吩並異靛藍 (DTPQ) N型小分子 半 導體於有機場效應電晶 體 應用
★ 剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯?吩小分子半導體材料★ 利用超音波噴塗技術製備混合有機陽離子鈣鈦礦 太陽能電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦太陽能電池作為最有潛力的材料具有可低溫溶液製程且成本低廉等優點,並藉由調整其元素成分,控制能隙以及表面形貌,到現在已經突破了20%的光電轉換效率,但最佳化元素成分為一個複雜的大工程,大多必須配製數種成分的前驅液後依序試驗,並無較有效的實驗方法。此外,鈣鈦礦太陽能電池要商業化依然有瓶頸,缺少能夠同時兼顧製作大面積、高產量同時擁有高品質薄膜的製程方法。
本研究採用超音波噴塗技術結合多通道注射幫浦的調控系統製備鈣鈦礦太陽能電池,此系統能藉由調控注射幫浦的流量來直接改變鈣鈦礦前驅液元素成分,提供一種能迅速最佳化成分比的實驗方法,省略繁瑣的實驗步驟與節省許多原料。本研究首先以最佳化鈣鈦礦鹵素成分為目標,分別利用PbI2、MAI、MABr以及PbI2、PbBr2、MAI兩種系統尋找CH3NH3PbI3-xBrx的最佳比例,比較使用不同的溴離子來源是否會對鈣鈦礦晶體尋找最化比例產生影響。而後,為了獲得更效率的鈣鈦礦太陽能電池元件,在熱退火階段使用真空閃蒸輔助法(Vacuum-assisted method)協助鈣鈦礦成晶,成功獲得大晶粒且平整的高質量鈣鈦礦薄膜,獲得17.1 %的光電轉換效率。此外,利用超音波噴塗的特性來製備大面積的鈣鈦礦薄膜,在最佳化噴塗參數以及使用真空閃蒸輔助法後成功製作了面積為70 cm2的高質量鈣鈦礦薄膜,最高效率達17 %且平均為14.95 %的光電轉換效率。此製程不但能獲得高效率的鈣鈦礦太陽能電池,更證明了放大製程以及商業化的可能性。
摘要(英) Perovskite solar cells as the most promising material due to low temperature solution processability and low cost have surpassed 20% power conversion efficiency through change element composition. Tuning the composition will change the band gap and the morphology, but it is a complicate procedure to optimize element composition. In general, several composition of precursor must be prepared and tested sequentially. Lack of efficient experimental method to optimize component rapidly. Moreover, it is necessary to develop practical processes that enable the fabrication of up-scale, high-throughput, and high-quality thin films.
In this study, perovskite solar cells are fabricated via ultrasonic spray-coated technology combined with multi-channel syringe pump control system. The system provides an experimental method to optimize composition rapidly through adjusting different pumping rates of precursor, and simplifying cumbersome experimental steps and saving raw materials. First, we aim to optimize the halide ratio of CH3NH3PbI3-xBrx precursor based on PbI2, MAI, MABr, and PbI2, PbBr2, MAI respectively. Then, figuring out whether bromide ions from distinguish compounds will have influence on optimizing process. Furthermore, an effective method flash annealing under vacuum is adopted to enhance quality of perovskite thin film with power conversion efficiency of up to 17.1% for small device. Meanwhile, a 70 cm2 high quality perovskite thin film is obtained through optimizing spray-coated parameters and routes with highest efficiency of 17% and 14.95% for average. The process presents a way toward a scalable and industrially compatible manufacturing process capable of creating high-performance perovskite solar cells.
關鍵字(中) ★ 鈣鈦礦
★ 太陽能電池
★ 噴塗法
★ 組成
★ 真空
關鍵字(英) ★ Perovskite
★ Solar cells
★ Spray coating
★ Composition
★ Vacuum
論文目次 摘要 i
Abstract ii
謝誌 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 太陽能電池之分類及發展 3
1-3 太陽能電池之工作原理及特性 6
第二章 文獻探討 8
2-1 鈣鈦礦太陽能電池 8
2-1-1 鈣鈦礦發展簡史及現況 8
2-1-2 鈣鈦礦材料介紹 10
2-1-2-1 鈣鈦礦材料優缺點 11
2-1-2-2 鈣鈦礦材料的元素調控 14
2-1-2-2-1 A位陽離子調控 15
2-1-2-2-2 B位金屬離子調控 16
2-1-2-2-2 X位鹵素離子調控 18
2-1-3 電池元件結構介紹 20
2-1-3-1 正式n-i-p結構 21
2-1-3-2 反式p-i-n結構 21
2-1-4 鈣鈦礦薄膜製程介紹 23
2-1-4-1 一步驟前驅物沉積法 24
2-1-4-2 兩步驟順序沉積法 26
2-1-4-3 氣相沉積加工法 27
2-1-4-4 其他製程介紹 29
2-1-5 溶液塗佈方法介紹 30
2-1-5-1 噴塗法 30
2-1-5-1-1 一步法噴塗製備鈣鈦礦薄膜 31
2-1-5-2-2 兩步法噴塗製備鈣鈦礦薄膜 35
2-1-5-3 其他溶液塗佈方法介紹 38
2-2 研究動機 40
第三章 實驗與研究方法 41
3-1 實驗藥品與溶劑 41
3-2 實驗儀器 42
3-2-1 元件製作儀器 42
3-2-2 元件測量儀器 43
3-2-3 超音波霧化噴塗系統 44
3-3 實驗步驟及方法 45
3-3-1 鈣鈦礦前驅物溶液配置 45
3-3-1-1 以MABr為溴離子來源溶液之配置 45
3-3-1-2 以PbBr2為溴離子來源溶液之配置 45
3-3-2 鈣鈦礦太陽能電池元件製作 46
3-3-2-1 基板ITO玻璃清洗 47
3-3-2-2 NiOx電洞傳輸層製備 48
3-3-2-3 鈣鈦礦主動層製備 49
3-3-2-3-1 以MABr為溴離子來源溶液制備鈣鈦礦主動層 49
3-3-2-3-2 以PbBr2為溴離子來源溶液制備鈣鈦礦主動層 50
3-3-2-4 主動層真空熱退火處理 51
3-3-2-5 電子傳輸層及電子萃取層製備 52
3-3-2-6 對電極製備 53
3-4 鈣鈦礦太陽能電池量測 53
第四章 結果與討論 55
4-1 鈣鈦礦前驅物鹵素離子比例之影響 55
4-2鈣鈦礦前驅物流量之影響 62
4-3 鈣鈦礦前驅物溴離子來源之影響 64
4-4 鈣鈦礦層熱退火之影響 71
4-5 製備大面積鈣鈦礦太陽能電池 80
第五章 結論 83
第六章 參考文獻 85
參考文獻 1. P. V. Kamat, K. Tvrdy, D. R. Baker and J. G. Radich, Chem. Rev., 2010, 110, 6664-6688.
2. G. Conibeer, Mater. Today, 2007, 10, 42-50.
3. J. Zhao, A. Wang, M. A. Green and F. Ferrazza, Appl. Phys. Lett., 1998, 73, 1991-1993.
4. O. Schultz, S. W. Glunz and G. P. Willeke, Prog. Photovoltaics: Research and Applications, 2004, 12, 553-558.
5. B. Yan, G. Yue, X. Xu, J. Yang and S. Guha, Phys. Status Solidi A, 2010, 207, 671-677.
6. J. Britt and C. Ferekides, Appl. Phys. Lett., 1993, 62, 2851-2852.
7. J. H. Scofield, A. Duda, D. Albin, B. L. Ballard and P. K. Predecki, Thin Solid Films, 1995, 260, 26-31.
8. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Prog. Photovoltaics: Research and Applications, 2008, 16, 235-239.
9. M. Powalla, G. Voorwinden, D. Hariskos, P. Jackson and R. Kniese, Thin Solid Films, 2009, 517, 2111-2114.
10. J. Gong, J. Liang and K. Sumathy, Renewable Sustainable Energy Rev., 2012, 16, 5848-5860.
11. Y.-J. Cheng, S.-H. Yang and C.-S. Hsu, Chem. Rev., 2009, 109, 5868-5923.
12. T. Xu and Q. Qiao, Energy Environ. Sci., 2011, 4, 2700-2720.
13. K. A. Mazzio and C. K. Luscombe, Chem. Soc. Rev., 2015, 44, 78-90.
14. Q. Guo, G. M. Ford, W.-C. Yang, B. C. Walker, E. A. Stach, H. W. Hillhouse and R. Agrawal, J. Am. Chem. Soc., 2010, 132, 17384-17386.
15. NREL, Best Research-Cell Efficiency Chart, https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies-190416.pdf).
16. M. Liu, M. B. Johnston and H. J. Snaith, Nature, 2013, 501, 395-398.
17. A. Kojima, Teshima, K., Miyasaka, T. & Shirai, Y. , in Proc. 210th ECS Meeting, 2006.
18. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, J. Am. Chem. Soc., 2009, 131, 6050-6051.
19. J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park and N.-G. J. N. Park, Nanoscale, 2011, 3, 4088-4093.
20. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, Sci. Rep., 2012, 2, 591.
21. M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami and H. J. Snaith, Science, 2012, 338, 643-647.
22. J. A. Chang, S. H. Im, Y. H. Lee, H.-j. Kim, C.-S. Lim, J. H. Heo and S. I. Seok, Nano Lett., 2012, 12, 1863-1867.
23. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M. K. Nazeeruddin and M. Grätzel, Nature, 2013, 499, 316-319.
24. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
25. H.-S. Kim, S. H. Im and N.-G. Park, ‎J. Phys. Chem. C, 2014, 118, 5615-5625.
26. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum and C. Ballif, J. Phys. Chem. Lett., 2014, 5, 1035-1039.
27. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J. T.-W. Wang, S. D. Stranks, H. J. Snaith and R. J. Nicholas, Nat. Phys., 2015, 11, 582-587.
28. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Science, 2013, 342, 341-344.
29. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Inorg. Chem., 2013, 52, 9019-9038.
30. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Nano Lett., 2013, 13, 1764-1769.
31. F. Hao, C. C. Stoumpos, R. P. H. Chang and M. G. Kanatzidis, J. Am. Chem. Soc., 2014, 136, 8094-8099.
32. S. Pang, H. Hu, J. Zhang, S. Lv, Y. Yu, F. Wei, T. Qin, H. Xu, Z. Liu and G. Cui, Chem. Mater., 2014, 26, 1485-1491.
33. G. E. Eperon, G. M. Paternò, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli and H. J. Snaith, J. Mater. Chem. A, 2015, 3, 19688-19695.
34. J. A. Christians, P. Schulz, J. S. Tinkham, T. H. Schloemer, S. P. Harvey, B. J. Tremolet de Villers, A. Sellinger, J. J. Berry and J. M. Luther, Nat. Energy, 2018, 3, 68-74.
35. A. S. Bhalla, R. Guo and R. Roy, Mater. Res. Innovations, 2000, 4, 3-26.
36. C. A. B. Randall, A. S.:Shrout, Thomas R.:Cross, L. E., J. Mater. Res., 1990, 829.
37. Q. Chen, N. De Marco, Y. Yang, T.-B. Song, C.-C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, Nano Today, 2015, 10, 355-396.
38. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Grätzel and F. De Angelis, Nano Lett., 2014, 14, 3608-3616.
39. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Energy Environ. Sci., 2014, 7, 982-988.
40. N. Pellet, P. Gao, G. Gregori, T.-Y. Yang, M. K. Nazeeruddin, J. Maier and M. Grätzel, Angew. Chem. Int. Ed., 2014, 53, 3151-3157.
41. H. Choi, J. Jeong, H.-B. Kim, S. Kim, B. Walker, G.-H. Kim and J. Y. Kim, Nano Energy, 2014, 7, 80-85.
42. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger and M. Grätzel, Energy Environ. Sci., 2016, 9, 656-662.
43. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Nature, 2015, 517, 476-480.
44. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Energy Environ. Sci., 2016, 9, 1989-1997.
45. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz and H. J. Snaith, Energy Environ. Sci., 2014, 7, 3061-3068.
46. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang and M. G. Kanatzidis, Nat. Photonics, 2014, 8, 489-494.
47. S. Colella, E. Mosconi, P. Fedeli, A. Listorti, F. Gazza, F. Orlandi, P. Ferro, T. Besagni, A. Rizzo, G. Calestani, G. Gigli, F. De Angelis and R. Mosca, Chem. Mater., 2013, 25, 4613-4618.
48. J. Qiu, Y. Qiu, K. Yan, M. Zhong, C. Mu, H. Yan and S. Yang, Nanoscale, 2013, 5, 3245-3248.
49. Y. Zhao and K. Zhu, J. Am. Chem. Soc., 2014, 136, 12241-12244.
50. Z. Song, S. Watthage, A. Phillips and M. Heben, J. Photonics Energy, 2016, 6, 022001.
51. J. J. Choi, X. Yang, Z. M. Norman, S. J. L. Billinge and J. S. Owen, Nano Lett., 2014, 14, 127-133.
52. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and H. J. Snaith, Nat. Commun., 2013, 4, 2885.
53. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Science, 2015, 348, 1234-1237.
54. M. M. Tavakoli, L. Gu, Y. Gao, C. Reckmeier, J. He, A. L. Rogach, Y. Yao and Z. Fan, Sci. Rep., 2015, 5, 14083.
55. Q. Dong, Y. Yuan, Y. Shao, Y. Fang, Q. Wang and J. Huang, Energy Environ. Sci., 2015, 8, 2464-2470.
56. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco and Y. Yang, Nat. Nanotechnol., 2015, 11, 75-81.
57. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel and L. Han, Science, 2015, 350, 944-948.
58. W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y.-B. Cheng and L. Han, Energy Environ. Sci., 2015, 8, 629-640.
59. K.-C. Wang, J.-Y. Jeng, P.-S. Shen, Y.-C. Chang, E. W.-G. Diau, C.-H. Tsai, T.-Y. Chao, H.-C. Hsu, P.-Y. Lin, P. Chen, T.-F. Guo and T.-C. Wen, Sci. Rep., 2014, 4, 4756.
60. P. Gao, M. Grätzel and M. K. Nazeeruddin, Energy Environ. Sci, 2014, 7, 2448-2463.
61. B. Conings, L. Baeten, C. De Dobbelaere, J. D′Haen, J. Manca and H.-G. Boyen, Adv. Mater., 2014, 26, 2041-2046.
62. J. Seo, S. Park, Y. Chan Kim, N. J. Jeon, J. H. Noh, S. C. Yoon and S. I. Seok, Energy Environ. Sci, 2014, 7, 2642-2646.
63. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nat. Mater., 2014, 13, 897-903.
64. N. Ahn, D.-Y. Son, I.-H. Jang, S. M. Kang, M. Choi and N.-G. Park, J. Am. Chem. Soc., 2015, 137, 8696-8699.
65. Y. Zhou, M. Yang, W. Wu, A. L. Vasiliev, K. Zhu and N. P. Padture, J. Mater. Chem. A, 2015, 3, 8178-8184.
66. T.-B. Song, Q. Chen, H. Zhou, C. Jiang, H.-H. Wang, Y. Yang, Y. Liu, J. You and Y. Yang, J. Mater. Chem. A, 2015, 3, 9032-9050.
67. D. Liu, M. K. Gangishetty and T. L. Kelly, J. Mater. Chem. A, 2014, 2, 19873-19881.
68. J. Cao, F. Wang, H. Yu, Y. Zhou, H. Lu, N. Zhao and C.-P. Wong, J. Mater. Chem. A, 2016, 4, 10223-10230.
69. X. B. Cao, Y. H. Li, F. Fang, X. Cui, Y. W. Yao and J. Q. Wei, RSC Adv., 2016, 6, 70925-70931.
70. H. Zheng, W. Wang, S. Yang, Y. Liu and J. Sun, RSC Adv., 2016, 6, 1611-1617.
71. T. Liu, Q. Hu, J. Wu, K. Chen, L. Zhao, F. Liu, C. Wang, H. Lu, S. Jia, T. Russell, R. Zhu and Q. Gong, Adv. Energy Mater., 2016, 6, 1501890.
72. C.-W. Chen, H.-W. Kang, S.-Y. Hsiao, P.-F. Yang, K.-M. Chiang and H.-W. Lin, Adv. Mater., 2014, 26, 6647-6652.
73. Q. Chen, H. Zhou, Z. Hong, S. Luo, H.-S. Duan, H.-H. Wang, Y. Liu, G. Li and Y. Yang, J. Am. Chem. Soc., 2014, 136, 622-625.
74. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, Science, 2016, 353, 58-62.
75. J. E. Bishop, J. A. Smith, C. Greenland, V. Kumar, N. Vaenas, O. S. Game, T. J. Routledge, M. Wong-Stringer, C. Rodenburg and D. G. Lidzey, ACS Appl. Mater. Interfaces, 2018, 10, 39428-39434.
76. L.-H. Chou, X.-F. Wang, I. Osaka, C.-G. Wu and C.-L. Liu, ACS Appl. Mater. Interfaces, 2018, 10, 38042-38050.
77. D. Vak, S.-S. Kim, J. Jo, S.-H. Oh, S.-I. Na, J. Kim and D.-Y. Kim, Appl. Phys. Lett., 2007, 91, 081102.
78. A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley and D. G. Lidzey, Energy Environ. Sci., 2014, 7, 2944-2950.
79. S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan and K. Xiao, ACS Photonics, 2015, 2, 680-686.
80. J. G. Tait, S. Manghooli, W. Qiu, L. Rakocevic, L. Kootstra, M. Jaysankar, C. A. Masse de la Huerta, U. W. Paetzold, R. Gehlhaar, D. Cheyns, P. Heremans and J. Poortmans, J. Mater. Chem. A, 2016, 4, 3792-3797.
81. H. Huang, J. Shi, L. Zhu, D. Li, Y. Luo and Q. Meng, Nano Energy, 2016, 27, 352-358.
82. J. H. Heo, M. H. Lee, M. H. Jang and S. H. Im, J. Mater. Chem. A, 2016, 4, 17636-17642.
83. S. C. Hong, G. Lee, K. Ha, J. Yoon, N. Ahn, W. Cho, M. Park and M. Choi, ACS Appl. Mater. Interfaces, 2017, 9, 7879-7884.
84. H. Ishihara, W. Chen, Y.-C. Chen, S. Sarang, N. De Marco, O. Lin, S. Ghosh and V. Tung, Adv. Mater. Interfaces, 2016, 3, 1500762.
85. S. Han, H. Kim, S. Lee and C. Kim, ACS Appl. Mater. Interfaces, 2018, 10, 7281-7288.
86. S. Gamliel, A. Dymshits, S. Aharon, E. Terkieltaub and L. Etgar, ‎J. Phys. Chem. C, 2015, 119, 19722-19728.
87. M. Ramesh, K. M. Boopathi, T.-Y. Huang, Y.-C. Huang, C.-S. Tsao and C.-W. Chu, ACS Appl. Mater. Interfaces, 2015, 7, 2359-2366.
88. Z. Liang, S. Zhang, X. Xu, N. Wang, J. Wang, X. Wang, Z. Bi, G. Xu, N. Yuan and J. Ding, RSC Adv., 2015, 5, 60562-60569.
89. D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows and D. G. Lidzey, Adv. Energy Mater., 2016, 6, 1600994.
90. H. Ishihara, S. Sarang, Y.-C. Chen, O. Lin, P. Phummirat, L. Thung, J. Hernandez, S. Ghosh and V. Tung, J. Mater. Chem. A, 2016, 4, 6989-6997.
91. B. Abdollahi Nejand, S. Gharibzadeh, V. Ahmadi and H. R. Shahverdi, ‎J. Phys. Chem. C, 2016, 120, 2520-2528.
92. X. Xia, W. Wu, H. Li, B. Zheng, Y. Xue, J. Xu, D. Zhang, C. Gao and X. Liu, RSC Adv., 2016, 6, 14792-14798.
93. J. Wang, J. Li, X. Xu, Z. Bi, G. Xu and H. Shen, RSC Adv., 2016, 6, 42413-42420.
94. P.-Y. Lin, Y.-Y. Chen, T.-F. Guo, Y.-S. Fu, L.-C. Lai and C.-K. Lee, RSC Adv., 2017, 7, 10985-10991.
95. Z. Bi, Z. Liang, X. Xu, Z. Chai, H. Jin, D. Xu, J. Li, M. Li and G. Xu, Sol. Energy Mater. Sol. Cells, 2017, 162, 13-20.
96. J. E. Bishop, D. K. Mohamad, M. Wong-Stringer, A. Smith and D. G. Lidzey, Sci. Rep., 2017, 7, 7962.
97. W.-C. Chang, D.-H. Lan, K.-M. Lee, X.-F. Wang and C.-L. Liu, ChemSusChem, 2017, 10, 1405-1412.
98. S. Uličná, B. Dou, D. H. Kim, K. Zhu, J. M. Walls, J. W. Bowers and M. F. A. M. van Hest, ACS Appl. Energy Mater., 2018, 1, 1853-1857.
99. J. Su, H. Cai, X. Ye, X. Zhou, J. Yang, D. Wang, J. Ni, J. Li and J. Zhang, ACS Appl. Mater. Interfaces, 2019, 11, 10689-10696.
100. M. Park, W. Cho, G. Lee, S. C. Hong, M.-c. Kim, J. Yoon, N. Ahn and M. Choi, Small, 2019, 15, 1804005.
101. Z. Liang, Z. Bi, K. Gao, Y. Fu, P. Guan, X. Feng, Z. Chai, G. Xu and X. Xu, Appl. Surf. Sci., 2019, 463, 939-946.
102. X. Xia, H. Li, W. Wu, Y. Li, D. Fei, C. Gao and X. Liu, ACS Appl. Mater. Interfaces, 2015, 7, 16907-16912.
103. C. F. J. Lau, X. Deng, Q. Ma, J. Zheng, J. S. Yun, M. A. Green, S. Huang and A. W. Y. Ho-Baillie, ACS Energy Lett., 2016, 1, 573-577.
104. F. Li, C. Bao, H. Gao, W. Zhu, T. Yu, J. Yang, G. Fu, X. Zhou and Z. Zou, Mater. Lett., 2015, 157, 38-41.
105. K. M. Boopathi, M. Ramesh, P. Perumal, Y.-C. Huang, C.-S. Tsao, Y.-F. Chen, C.-H. Lee and C.-W. Chu, J. Mater. Chem. A, 2015, 3, 9257-9263.
106. F. Li, C. Bao, W. Zhu, B. Lv, W. Tu, T. Yu, J. Yang, X. Zhou, Y. Wang, X. Wang, Y. Zhou and Z. Zou, J. Mater. Chem. A, 2016, 4, 11372-11380.
107. F. Zabihi, M.-R. Ahmadian-Yazdi and M. Eslamian, Nanoscale Res. Lett., 2016, 11, 71.
108. F. Shao, L. Xu, Z. Tian, Y. Xie, Y. Wang, P. Sheng, D. Wang and F. Huang, RSC Adv., 2016, 6, 42377-42381.
109. N. Mohammadian, A. H. Alizadeh, A. Moshaii, S. Gharibzadeh, A. Alizadeh, R. Mohammadpour and D. Fathi, Thin Solid Films, 2016, 616, 754-759.
110. G. Chai, S. Wang, Z. Xia, S. Luo, C. Teng, T. Yang, Z. Nie, T. Meng and H. Zhou, Semicond. Sci. Technol., 2017, 32, 074003.
111. M. Remeika, S. R. Raga, S. Zhang and Y. Qi, J. Mater. Chem. A, 2017, 5, 5709-5718.
112. M. Habibi, M.-R. Ahmadian-Yazdi and M. Eslamian, J. Photonics Energy, 2017, 7, 022003-022003.
113. G. Chai, S. Luo, H. Zhou and W. A. Daoud, Mater. Des., 2017, 125, 222-229.
114. S. Kavadiya, D. M. Niedzwiedzki, S. Huang and P. Biswas, Adv. Energy Mater., 2017, 7, 1700210.
115. S. Bag, J. R. Deneault and M. F. Durstock, Adv. Energy Mater., 2017, 7, 1701151.
116. K.-C. Hsu, C.-H. Lee, T.-F. Guo, T.-H. Chen, T.-H. Fang and Y.-S. Fu, Org. Electron., 2018, 57, 221-225.
117. T.-T. Duong, T.-D. Tran and Q.-T. Le, J. Mater. Sci.: Mater. Electron., 2019, 30, 11027-11033.
118. D. Wang, J. Zheng, X. Wang, J. Gao, W. Kong, C. Cheng and B. Xu, J. Energy Chem., 2019, 38, 207-213.
119. F. Di Giacomo, V. Zardetto, A. D′Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. Di Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore and T. M. Brown, Adv. Energy Mater., 2015, 5, 1401808.
120. B. Dou, J. B. Whitaker, K. Bruening, D. T. Moore, L. M. Wheeler, J. Ryter, N. Breslin, J. Berry, S. Garner, F. Barnes, S. E. Shaheen, C. Tassone, K. Zhu and M. F. A. M. Hest, ACS Energy Lett., 2018, 3, 2558-2565
121. S. K. Karunakaran, G. M. Arumugam, W. Yang, S. Ge, S. N. Khan, X. Lin and G. Yang, J. Mater. Chem. A, 2019, 7, 13873-13902.
122. M. K. Kim, H. S. Lee, S. R. Pae, D.-J. Kim, J.-Y. Lee, I. Gereige, S. Park and B. Shin, J. Mater. Chem. A, 2018, 6, 24911-24919.
123. A. T. Mallajosyula, K. Fernando, S. Bhatt, A. Singh, B. W. Alphenaar, J.-C. Blancon, W. Nie, G. Gupta and A. D. Mohite, Appl Mater Today, 2016, 3, 96-102.
124. S. Razza, F. Di Giacomo, F. Matteocci, L. Cinà, A. L. Palma, S. Casaluci, P. Cameron, A. D′Epifanio, S. Licoccia, A. Reale, T. M. Brown and A. Di Carlo, J. Power Sources, 2015, 277, 286-291.
125. Z. Yang, C.-C. Chueh, F. Zuo, J. H. Kim, P.-W. Liang and A. K. Y. Jen, Adv. Energy Mater., 2015, 5, 1500328.
126. S. Razza, S. Castro-Hermosa, A. Di Carlo and T. M. Brown, APL Mater., 2016, 4, 091508.
127. K. Hwang, Y.-S. Jung, Y.-J. Heo, F. H. Scholes, S. E. Watkins, J. Subbiah, D. J. Jones, D.-Y. Kim and D. Vak, Adv. Mater., 2015, 27, 1241-1247.
指導教授 劉振良(Cheng-Liang Liu) 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明