參考文獻 |
[1]蔡娪嫣, 今年溫室氣體破表!最新報告:全球每秒產生1175公噸CO2, https://www.storm.mg/article/685809, 2018.
[2]C. Le Quéré, R. M. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A.C. Manning, J.
Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P.P. Tans, O. D.
Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts and L. Bopp, Global Carbon Budget 2017, Earth System Science Data Discussions, 2018.
[3]邱一庭, 暖化的科學(3):二氧化碳與暖化, https://scitechvista.nat.gov.tw/c/sgZw.htm, 2018.
[4]台灣電力股份有限公司, https://www.taipower.com.tw/tc/page.aspx?mid=216, 2019.
[5]陳佳利, 燃氣新時代, https://ourisland.pts.org.tw/content/%E7%87%83%E6%B0%A3%E6%96%B0%E6%99%82%E4%BB%A3, 2017.
[6]冀樹勇,譚志豪,劉浙仁,全球暖化的減碳策略-碳捕捉與封存(CCS), Journal of
Professional Geotechnical Engineers,第9期, pp.32-39, 2014.
[7]能源局, 〈能源統計月報,發電量_歷年〉, https://www.moeaboe.gov.tw/ECW/populace/web_book/WebReports.aspx?book=M_CH&menu_id=142, 2018.
[8]A. A. Olajire, Valorization of Greenhouse Carbon Dioxide Emissions into Value-Added Products by Catalytic Processes, Journal of CO2 Utilization, vol. 3, pp. 74-92, 2013.
[9]楊閎舜,周正堂, 變壓吸附程序在二氧化碳捕獲技術之發展與研究, 化工, 63卷1期, pp. 83-97, 2016.
[10]台灣綜合研究院, 最新發電與最新減碳相關技術分析, 2017.
[11]張育誠,吳國光,焦鴻文,簡國祥,歐陽湘, 富氧燃燒技術之應用與分析,台灣能源期刊, 2卷3期, pp.323-331, 2015.
[12]M. Zaman, J. H. Lee, Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies, Korean Journal of Chemical Engineering, vol. 30, pp. 1497-1526, 2013.
[13]L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[14]K. P. Resnik, Aqua Ammonia Process for Simultaneous Removal of CO2, SO2 and NOx, Int. J. Environmental Technology and Management, vol. 4, pp. 89-104, 2004.
[15]X. Pan, D. Clodic and J. Toubassy, CO2 Capture by Anti-Sublimation Process and Its Technical Economic Analysis, Greenhouse Gases: Science and Technology, vol. 3, pp. 8-20, 2013.
[16]National Energy Technology Laboratory, Case B11A Performance Results, Cost and Performance Baseline for Fossil Energy Plants, vol. 1a, 2015.
[17]D. C. Montgomery, Design and Analysis of Experiments, 7E International Student Version, 7th ed., John Wiley & Sons Ltd., Hoboken, 2009.
[18]A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Carnegie Mellon University Press, Pittsburgh, 2010.
[19]R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, Imperial College Press, London, 1997.
[20]S. U. Rege, R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[21]C. W. Skarstrom, Esso Research and Engineering Company. US Patent 2944627, 1960.
[22]A. E. Rodrigues, M. D. LeVan and D. Tondeur, Adsorption: Science and Technology, Kluwer Academic Publishers, Boston, 1988.
[23]W. Choi, T. Kwon and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[24]D. Daniel, M. P. G. De, Process for Separating a Binary Gaseous Mixture by Adsorption. US Patent 3155468, 1964.
[25]P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[26]B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[27]K. Chihara, M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[28]J. J. Collins, Air Separation by Adsorption. US Patent 4026680, 1975.
[29]S. J. Doong, R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[30]L. Jiang, V.G. Fox and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[31]A. Fuderer, E. Rudelstorfer, Selective Adsorption Process. US Patent 3986849, 1976.
[32]P. H. Turnock, R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[33]R.T. Yang, S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[34]S. Farooq, D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[35]E. Glueckauf, J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[36]M. Mofarahi, E. J. Shokroo, Comparison of two pressure swing adsorption processes for air separation using zeolite 5A and zeolite 13X, Petroleum and Coal, 55(3), pp. 216-225, 2013.
[37]M. Xu, H. C. Wu, Y. S. Lin and S. G. Deng, Simulation and optimization of pressure swing adsorption process for high-temperature air separation by perovskite sorbents, Chemical Engineering Journal, vol. 354, pp. 62-74, 2018.
[38]C. X. Tian, Q. Fu, Z. Y. Ding, Z. Y. Han and D. H. Zhang, Experiment and simulation study of a dual-reflux pressure swing adsorption process for separating N2/O2, Separation and Purification Technology, vol. 189, pp. 54-65, 2017.
[39]L. Zhou, J. Li, Y. P. Zhou, W. Su and Y. Sun, Experimental studies of a new compact design four-bed psa equipment for producing oxygen, AlChE Journal, vol. 51, pp. 2695-2701, 2005.
[40]L. Zhou, X. F. Ouyang, W. Li, S. N. Li and Y. P. Zhou, Experiments of improving the performance of disk type psa columns in oxygen production, Sep. Sci. Technol., vol. 41, pp. 247-259, 2006.
[41]X. Zhu, Y. Liu, X. Yang and W. Liu, Study of a novel rapid vacuum pressure swing adsorption process with intermediate gas pressurization for producing oxygen, Adsorption, vol. 23(1), pp. 175-184, 2017.
[42]E. S. Kikkinides, R.T. Yang and S.H. Cho, Concentration and recovery of CO2 from flue gas by pressure swing adsorption, Ind. Eng. Chem. Res. ,vol.32, pp.2714, 1993.
[43]J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Agueda, A. Sanz and P. Gomez, Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle,Computers & Chemical Engineering, vol. 35, pp. 1010-1019,2011.
[44]C. Z. Shen, Z. Liu, P. Li and J. G. Yu, Two-Stage VPSA Process for CO2 Capture from Flue Gas Using Activated Carbon Beads, Industrial & Engineering Chemistry Research, vol. 51, pp. 5011-5021, 2012.
[45]D. Wawrzynczak, I. Majchrzak-Kuceba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smolka and A. Zajchowski, The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[46]P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh and R. Todd, Capture of CO2 from flue gas streams with zeolite 13X by vacuum-pressure swing adsorption, Adsorption, vol. 14, pp. 575-582, 2008.
[47]J. Zhang, P. A. Webley and P. Xiao, Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[48]L. Wang, Z. Liu, P. Li, J. Wang and J. G. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption Journal of the International Adsorption Society, vol. 18, pp. 445-459, 2012.
[49]L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu and A. E. Rodrigues, Experimental evaluation of adsorption technology for CO2 capture from flue gas in an existing coal-fired power plant, Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[50]S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Carbon Dioxide Utilization for Global Sustainability, Studies in Surface Science and Catalysis, vol.153, pp.405-410, 2004.
[51]R Haghpanah,. R. Nilam, A.Rajendran, S.Farooq and I.A. Karimi, Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture, AIChE Journal, vol.
59(12), pp.4735-4748, 2013.
[52]J. Ling, P. Xiao , A. Ntiamoah, D. Xu, P.Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology , Journal of Separation Science and Engineering, vol.24(4), pp.460-467, 2016.
[53]Q. Huang, M. Eić, Commercial Adsorbents as Benchmark Materials for Separation of Carbon Dioxide and Nitrogen by Vacuum Swing Adsorption Process, Separation and Purification Technology, vol. 103, pp. 203-215, 2013.
[54]R. Haghpanah, A. Rajendran, S. Farooq and I. A. Karimi, Optimization of One- and Two-Stage Kinetically Controlled CO2 Capture Processes from Postcombustion Flue Gas on a Carbon Molecular Sieve, Industrial & Engineering Chemistry Research, vol. 53, pp. 9186-9198, 2014.
[55]Z. Liu, C.A. Grande, P. Li, J. Yu and A.E. Rodrigues, Multi-bed vacuum pressure swing adsorption for carbon dioxide capture from flue gas, Separation and Purification Technology, vol.81(3), pp. 307-317, 2011.
[56]Z. Liu, L. Wang, X. Kong, P. Li, J. Yu and A.E. Rodrigues, Onsite CO2 capture from flue gas by an adsorption process in a coal-fired power plant, Industrial & Engineering Chemistry Research, vol. 51, pp.7355-7363, 2012.
[57]L. Riboldi, O. Bolland, Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants, International Journal of Greenhouse Gas Control, vol.39, pp 1-16, 2015.
[58]Y. Shen, Y. Zhou, D. Li, Q. Fu, D. Zhang and P. Na, Dual-reflux pressure swing adsorption process for carbon dioxide capture from dry flue gas, International Journal of Greenhouse Gas Control, vol.65, pp 55-64, 2017.
[59]G.N. Nikolaidis, E.S. Kikkinides and M.C. Georgiadis, An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg- MOF-74, Industrial and Engineering Chemistry Research, vol.56(4), pp 974-988, 2017.
[60]J.A.A. Gibson, E. Mangano, E. Shiko, A.G. Greenaway, A.V. Gromov, M. M. Lozinska, D. Friedrich, E. E. B. Campbell, P.A. Wright and S. Brandani, Adsorption Materials and Processes for Carbon Capture from Gas-Fired Power Plants: AMPGas, Industrial and Engineering Chemistry Research, vol.55(13), pp 3840-3851, 2016.
[61]S. Gao, L. Liu, A. Frank, J. Wang, M. Chris, D. Guo, C. Keith, H. Niu, D. Joanna, X. Wang, S. Wang, B. Roberto and S. Xu, China′s first pilot-scale demonstration of post-combustion CO2 capture from a natural-gas-fired power plant, Greenhouse Gases: Science and Technology, vol.6(2), pp. 178-187, 2016.
[62]P. E. Jahromi, S. Fatemi and A. Vatani, Effective Design of a Vacuum Pressure Swing Adsorption Process to Recover Dilute Helium from a Natural Gas Source in a Methane-Rich Mixture with Nitrogen, Industrial and Engineering Chemistry Research, vol.57(38), pp.12895-12908, 2018.
[63]A. M. Ghaedi, S. Karamipour, A. Vafaei, M.M. Baneshi and V. Kiarostami, Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network, Ultrasonics Sonochemistry, vol 51, pp. 264-280,2019.
[64]J. H. Park, H. T. Beum, J. N. Kim and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[65]D. Duong, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, London, 1998.
[66]C. Y. Wen, L. T. Fan, Models for Flow Systems and Chemical Reactors, Dekker, New York, 1975.
[67]R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2007.
[68]E. N. Fuller, P. D. Schettler and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Gas Chromatography, vol. 3, pp. 222-227, 1965.
[69]E. N. Fuller, K. Ensley and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[70]D. F. Fairbanks, C.R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[71]W. L. McCabe, J. C. Smith and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., McGraw-Hill, New York, 2005.
[72]W. H. McAdams, Heat Transmission, 3rd ed., McGraw-Hill, New York, 1954.
[73]S. Farooq, D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of The one- Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[74]N. Wakao, S. Kaguei and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[75]G. Carta, A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[76]J. Karger, D. M. Ruthven and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, Wiley, Hoboken, 2008.
[77]M. D. LeVan, G. Carta and C. M. Yon, Adsorption and Ion Exchange, Perry′s Chemical Engineers′ Handbook, 7th ed., McGrawHill, New York, 1997.
[78]K. Kawazoe, M. Suzuki and K. Chihara, Chromatographic Study of Diffusion in Molecular-Sieving Carbon, Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[79]H. Qinglin, S. M. Sundaram and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[80]X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[81]P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[82]李念祖, 利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗, 國立中央大學, 碩士論文, 2015.
[83]J. M. Smith, H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., McGraw-Hill, Singapore, 1987.
[84]顏志捷, 利用雙塔變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計, 國立中央大學碩士論文, 2019.
[85]Y. A. Cengel, M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed., McGraw-Hill, New York, 2004.
[86]A. Golmakani, S. Fatemi and J. Tamnanloo, CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[87]K. Kamatani, Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution, Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
[88]R. A. Fisher, Statistical Methods for Research Worker, Oliver and Boyd, Edinburgh, 1925.
[89]R. G. Lomax, D. L. Hahs-Vaughn, Statistical Concepts: A Second Course, 4th ed., Routledge, New York, 2012.
[90]田賀文, 以反應曲面法建立旋鍛製程之菇狀預測模型, 國立中央大學,碩士論文, 2013.
[91]G. E. P. Box, N. R. Draper, Empirical Model Building and Response Surfaces, John Wiley & Sons, New York, 1987.
[92]R. H. Myers, D. C. Montgomery, Response Surface Methodology, John Wiley & Sons, New York, 1995.
[93]葉怡成, 實驗規劃-製程與產品最佳化, 五南圖書出版公司, 2005.
[94]A. Bandyopadhyay, Amine Versus Ammonia Absorption of CO2 as a Measure of Reducing GHG Emission: A Critical Analysis, Clean Technologies and Environmental Policy, vol. 13, pp. 269-294, 2011.
|