博碩士論文 106324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.22.27.41
姓名 張力太(Li-Tai Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可撓曲金/矽單晶奈米線陣列蕭基近紅外光感測特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以兩步驟金屬催化無電鍍蝕刻法,成功地在(001)矽單晶基材上製備大面積準直排列之矽單晶奈米線陣列,除此之外,更進一步製備出雙面矽單晶奈米線陣列結構,此雙面結構展現在可見光至近紅外光波段的高吸收能力,且由光學性質量測結果可證明蝕刻後保留於奈米線底部的銀金屬顆粒,在近紅外光波段有大幅提升光吸收之作用。在元件的製程中,本實驗首先在較厚矽單晶基材上開發具有優異近紅外光偵測性能之金/矽蕭基接面元件,並由TEM觀察在奈米線結構上蒸鍍金與鋁金屬薄膜之表面形貌,分別使用940 nm及1300 nm近紅外光光源照射金/矽單晶奈米線陣列蕭基光感測器,在零偏壓下量測其光響應度、偵測靈敏度及響應速度,並將具有最佳性能之元件製程條件直接與超薄可撓曲矽單晶基材整合。
本研究成功製備之超薄矽晶圓具有十分優異的彎曲能力,可撓曲在較大曲率之表面進行光感測,透過在其上製備準直矽單晶奈米線陣列及蕭基接面元件結構,在近紅外光照射下顯示其響應速度及光偵測靈敏度皆有相當優異的表現,同時此超薄矽晶元件可承受多次反覆彎曲,因此具備良好的元件可靠度。本研究最後探討底部銀顆粒對於近紅外光偵測之光電流產生機制,並成功開發設計出可由照射光強度直接調控光電流訊號之矽基近紅外光感測元件,此為近年文獻中較少提及的。
摘要(英) In this study, the two-step metal-catalyzed electroless etching approach is successfully used to fabricate large-area, vertically-aligned single crystalline silicon nanowire arrays (SiNWs) on (001) silicon substrate. In addition, the double-sided SiNWs are further prepared in this study. The double-sided structure exhibits high broadband absorption from visible to near-infrared (NIR) light range, and the large enhancement in NIR range can be attributed to silver-nanoparticles remaining at the bottom of the SiNWs after two-step etching processes. In the fabrication of the NIR photodetectors, we first develop Au/SiNWs Schottky junction on the origin thick Si substrate. By E-beam evaporation, Au and Al metal thin film are deposited on the top surface of SiNWs, and their morphologies are observed by TEM analysis. The produced Au/SiNWs Schottky junction NIR photodetectors are able to operate at zero external bias voltage and exhibite high responsivity, sensitivity and rapid response time to 940 nm and 1300 nm NIR light.
The flexible Au/SiNWs Schottky junction NIR photodetectors are demonstrated by combining with ultra-thin Si substrate which has excellent bending ability, and it can be applied to achieve detection of NIR light on larger curvature surface. Furthermore, the produced flexible NIR photodetectors exhibit excellent reliability which can withstand several bending cycles. Finally, the mechanisms of photocurrent generation by Au/SiNWs Schottky junction and Ag nanoparticles under NIR light illumination are dicussed, and we successfully developed SiNWs-based NIR photodetector that can directly modulate the photocurrent signal by using different intensity of the NIR light, which is less mentioned in the literature.
關鍵字(中) ★ 矽晶奈米線
★ 蕭基接面
★ 近紅外光感測元件
★ 可撓曲光感測元件
關鍵字(英)
論文目次 第一章 前言及文獻回顧 1
1-1 前言 1
1-2 矽單晶奈米線之製備方法 3
1-3 超薄可撓曲矽晶感測元件 7
1-3-1 超薄可撓曲元件之應用 7
1-3-2 超薄可撓曲矽晶元件之製程 8
1-4 低維度金屬材料之特性 10
1-5 光偵測元件 12
1-5-1 元件整流與非整流特性 12
1-5-2 蕭基接面之光感測機制 14
1-6 紅外線光感測器 15
1-7 研究動機及目標 16
第二章 實驗步驟及儀器設備 17
2-1 實驗步驟 17
2-1-1 矽晶基材使用前處理 17
2-1-2 矽晶基材拋光處理 18
2-1-3製備超薄可撓曲矽單晶基材 18
2-1-4以兩步驟金屬催化化學蝕刻法製備矽單晶奈米線陣列 18
2-1-5以兩步驟金屬催化化學蝕刻法製備雙面矽單晶奈米線陣列 19
2-1-6蒸鍍金及鋁金屬薄膜 19
2-1-7製備光偵測元件 19
2-2 試片分析 20
2-2-1 掃描式電子顯微鏡 20
2-2-2 穿透式電子顯微鏡 20
2-2-3 可見光-近紅外光譜儀 21
2-2-4 影像式水滴接觸角量測儀 21
2-2-5 近紅外光偵測系統 22
第三章 結果與討論 23
3-1製備矽單晶奈米線陣列 23
3-1-1 單面矽單晶奈米線陣列之製備 23
3-1-2 雙面矽單晶奈米線陣列之製備 24
3-1-3 可見光-近紅外光積分球光譜儀分析 25
3-2 超薄矽單晶基材上製備矽單晶奈米線陣列 27
3-2-1 超薄可撓曲矽單晶基材之製備 27
3-2-2 在可撓曲矽單晶基材上製備單面及雙面矽單晶奈米線陣列 28
3-2-3 可見光-近紅外光積分球光譜儀分析 30
3-3 近紅外光偵測系統 31
3-3-1金/矽單晶奈米線之蕭基接面製備 31
3-3-2 金/矽單晶奈米線蕭基接面結構之近紅外光感測特性與探討 33
3-3-3 在超薄矽單晶基材上製備金/矽單晶奈米線蕭基接面結構之光感測特性與探討 36
3-3-4 光偵測器之靈敏度、響應度與響應時間 38
3-3-5 可調控式雙面金/矽單晶奈米線蕭基接面結構之近紅外光感測特性與探討 40
第四章 結論與未來展望 42
參考文獻 44
表目錄 52
圖目錄 54
參考文獻 [1] S. Lin, Y. Lu, S. Feng, Z. Hao and Y. Yan, "A high current density direct-current generator based on a moving van der Waals Schottky diode," Adv. Mater. 31 (2019) 1804398.
[2] A. R. Ullah, F. Meyer, J. G. Gluschke, S. Naureen, P. Caroff, P. Krogstrup, J. Nygård and A. P. Micolich, "P-GaAs nanowire metal–semiconductor field-effect transistors with near-thermal limit gating," Nano Lett. 18 (2018) 5673.
[3] S. A. Vanalakar, V. L. Patil, N. S. Harale, S. A. Vhanalakar, M. G. Gang, J. Y. Kim, P. S. Patil and J. H. Kim, "Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications," Sens. Actuators, B 221 (2015) 1195.
[4] K. Cui, A. S. Anisimov, T. Chiba, S. Fujii, H. Kataura, A. G. Nasibulin, S. Chiashi, E. I. Kauppinen and S. Maruyama, "Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films," J. Mater. Chem. A 2 (2014) 11311.
[5] J. Bieker, F. Roustaie, H. Schlaak, C. Langer, R. Schreiner, M. Lotz and S. Wilfert, "Field emission characterization of in situ deposited gold nanocones with variable cone densities, " J. Vac. Sci. Technol. B 36 (2018) 02C105.
[6] H. D. Um, K. T. Park, J. Y. Jung, X. Li, K. Zhou, S. W. Jee and J. H. Lee, "Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells," Nanoscale 6 (2014) 5193.
[7] J. Y. Kim, J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee and Y. K. Choi, "Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor," Biosens. Bioelectron. 55 (2014) 162.
[8] Y. Chen, L. Liu, J. Xiong, T. Yang, Y. Qin and C. Yan, "Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries," Adv. Funct. Mater. 25 (2015) 6701.
[9] Y. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. Tien Chiu, C. Young Lee and I. N. Lin, "Stacked silicon nanowires with improved field enhancement factor," ACS Appl. Mater. Interfaces 2 (2010) 331.
[10] Z. Chen, M. Ning, G. Ma, Q. Meng, Y. Zhang, J. Gao, M. Jin, Z. Chen, M. Yuan, X. Wang, J. M. Liu and G. Zhou, "Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting," Nanotechnology 28 (2017) 275401.
[11] J. Burm, K. I. Litvin, W. J. Schaff and L. F. Eastman, "Optimization of high-speed metal-semiconductor-metal photodetectors," Photon. Technol. Lett. 6 (1994) 722.
[12] N. Azadgar, N. Naderi and M. Eshraghi, "Effect of annealing of silver electrodes on photolithographically fabricated silicon trenches for photodetection applications," J. Electron. Mater. 47 (2018) 5212.
[13] A. Das Mahapatra, A. Das, S. Ghosh and D. Basak, "Defect-assisted broad-band photosensitivity with high responsivity in Au/self-seeded TiO2 NR/Au-based back-to-back Schottky junctions," ACS Omega 4 (2019) 1364.
[14] Y. Feng, C. He, Z. Xu, J. Hu and C. Peng, "A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect," Mater. Res. Express 5 (2018) 015901.
[15] Z. Wang, R. Yu, X. Wang, W. Wu and Z. L. Wang, "Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect," Adv. Mater. 28 (2016) 6880.
[16] Y. Dai, X. Wang, W. Peng, H. Zou, R. Yu, Y. Ding, C. Wu and Z. L. Wang, "Largely improved near-infrared silicon-photosensing by the piezo-phototronic effect," ACS Nano. 11 (2017) 7118.
[17] N. Youngblood, C. Chen, S. J. Koester and M. Li, "Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current," Nature Photonics 9 (2015) 247.
[18] W. Peng, X. Wang, R. Yu, Y. Dai, H. Zou, A. C. Wang, Y. He and Z. L. Wang, "Enhanced performance of a self-powered organic/inorganic photodetector by pyro-phototronic and piezo-phototronic effects," Adv. Mater. 29 (2017) 1606698.
[19] P. Wang, Y. Liu, J. Yin, W. Ma, Z. Dong, W. Zhang, J. Zhu and J. Sun, "Tunable positive and negative photoconductive photodetector based on a gold/graphene/p-type silicon heterojunction," J. Mater. Chem. C 7 (2019) 887.
[20] S. Misra, L. Yu, M. Foldyna and P. Roca I Cabarrocas, "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Sol. Energy Mater. Sol. Cells 118 (2013) 90.
[21] L. Yu and P. Roca I Cabarrocas, "Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires," Physica E 44 (2012) 1045.
[22] R. Q. Zhang, Y. Lifshitz and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Adv. Mater. 15 (2003) 635.
[23] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Appl. Phys. Lett. 77 (2000) 2572.
[24] H. Fang, Y. Wu, J. Zhao and J. Zhu, "Silver catalysis in the fabrication of silicon nanowire arrays," Nanotechnology 17 (2006) 3768.
[25] H. Asoh, F. Arai and S. Ono, "Effect of noble metal catalyst species on the morphology of macroporous silicon formed by metal-assisted chemical etching," Electrochim. Acta 54 (2009) 5142.
[26] S. Chattopadhyay, X. Li and P. W. Bohn, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching," J. Appl. Phys. 91 (2002) 6134.
[27] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching," Nano Lett. 8 (2008) 3046.
[28] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub and O. Elkechai, "Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution," Appl. Surf. Sci. 255 (2009) 6210.
[29] H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang and J. H. He, "Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting," Opt. Express 20 (2012) A94.
[30] Z. Huang, H. Fang and J. Zhu, "Fabrication of silicon nanowire arrays with controlled diameter, length, and density," Adv. Mater. 19 (2007) 744.
[31] K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Adv. Mater. 14 (2002) 1164.
[32] S. Yae, Y. Morii, N. Fukumuro and H. Matsuda, "Catalytic activity of noble metals for metal-assisted chemical etching of silicon," Nanoscale Res. Lett. 7 (2012) 352.
[33] Y. Y. Song, Z. D. Gao, J. J. Kelly and X. H. Xia, "Galvanic deposition of nanostructured noble-metal films on silicon," Electrochem. Solid-State Lett. 8 (2005) C148.
[34] Z. R. Smith, R. L. Smith and S. D. Collins, "Mechanism of nanowire formation in metal assisted chemical etching," Electrochimi. Acta 92 (2013) 139.
[35] T. Qiu, X. L. Wu, G. G. Siu and P. K. Chu, "Ingrowth mechanism of silicon nanowiresand silver dendrites," J. Electron. Mater. 35 (2006) 10.
[36] S. L. Cheng, C. H. Chung and H. C. Lee, "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates," J. Electrochem. Soc. 155 (2008) D711.
[37] S. Srivastava, D. Kumar, S. Schmitt, K. N Sood, S. Christiansen and P. Singh,"Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics," Nanotechnology 25 (2014) 175601.
[38] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching," J. Phys. Chem. C 112 (2008) 4444.
[39] H. A. Chaliyawala, A. Ray, R. K. Pati and I. Mukhopadhyay, "Strong light absorption capability directed by structured profile of vertical Si nanowires," Opt. Mater. 73 (2017) 449.
[40] M. Ben Rabha, L. Khezami, A. B. Jemai, R. Alhathlool and A. Ajbar, "Surface passivation of silicon nanowires based metal nano-particle assisted chemical etching for photovoltaic applications," J. Cryst. Growth 462 (2017) 35.
[41] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin and C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching," Curr. Appl. Phys. 13 (2013) 717.
[42] C. Chartier, S. Bastide and C. Lévy Clément, "Metal-assisted chemical etching of silicon in HF–H2O2," Electrochimi. Acta 53 (2008) 5509.
[43] L. Lin, S. Guo, X. Sun, J. Feng and Y. Wang, "Synthesis and photoluminescence properties of porous silicon nanowire arrays," Nanoscale Res. Lett. 5 (2010) 1822.
[44] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo and Y. Shi, "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration," Nanoscale Res. Lett. 7 (2012) 663.
[45] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer and U. Gösele, "Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon," J. Phys. Chem. C 114 (2010) 10683.
[46] B. Ozdemir, M. Kulakci, R. Turan and H. E. Unalan, "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires," Nanotechnology 22 (2011) 155606.
[47] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park and J. H. Lee, "A strong antireflective solar cell prepared by tapering silicon nanowires," Opt. Express 18 (2010) A286.
[48] R. Lu, Y. Wang, L. Gu, W. Wang, Y. Fang and J. Sha, "Composite structure of SiO2@AgNPs@p-SiNWs for enhanced broadband optical antireflection," Opt. Express 21 (2013) 17484.
[49] L. Hao, H. Liu, H. Xu, S. Dong, Y. Du, Y. Wu, H. Zeng, J. Zhu and Y. Liu, "Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature," Sens. Actuators, B 283 (2019) 740.
[50] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan and Y. Shi, "Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires," IEEE Electron Device Lett. 39 (2018) 1069.
[51] M. Hossain, G. S. Kumar, S. N. Barimar Prabhava, E. D. Sheerin, D. Mccloskey, S. Acharya, K. D. M. Rao and J. J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications," ACS Nano. 12 (2018) 4727.
[52] D. K. Kwon, S. J. Lee and J. M. Myoung, "High-performance flexible ZnO nanorod UV photodetectors with a network-structured Cu nanowire electrode," Nanoscale 8 (2016) 16677.
[53] Y. Liu, Y. Liu, S. Qin, Y. Xu, R. Zhang and F. Wang, "Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors," Nano Res. 10 (2017) 1880.
[54] G. Chen, Y. Yu, K. Zheng, T. Ding, W. Wang, Y. Jiang and Q. Yang, "Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible–NIR photodetectors," small 11 (2015) 2848.
[55] S. Lim, D. S. Um, M. Ha, Q. Zhang, Y. Lee, Y. Lin, Z. Fan and H. Ko, "Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes," Nano Res. 10 (2017) 22.
[56] E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan and H. E. Unalan, "Silicon nanowire network metal-semiconductor-metal photodetectors," Appl. Phys. Lett. 103 (2013) 083114.
[57] D. H. Kim, W. Lee and J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale 10 (2018) 17705.
[58] J. M. Weisse, C. H. Lee, D. R. Kim and X. Zheng, "Fabrication of flexible and vertical silicon nanowire electronics," Nano Lett. 12 (2012) 3339.
[59] S. C. Shiu, S. C. Hung, J. J. Chao and C. F. Lin, "Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics," Appl. Surf. Sci. 255 (2009) 8566.
[60] S. Shu Chia, S. Hong Jhang, H. Shih Che and L. Ching Fuh, "Transfer of silicon nanowires onto alien substrates by controlling direction of metal-assisted etching," IEEE International Conference on Nanotechnology 10 (2010) 474.
[61] Y. R. Kang, S. C. Kang, K. K. Paek, Y. K. Kim, S. W. Kim and B. K. Ju, "Air-gap type film bulk acoustic resonator using flexible thin substrate," Sens. Actuators, A 117 (2005) 62.
[62] S. Thiyagu, C. C. Hsueh, C. T. Liu, H. J. Syu, T. C. Lin and C. F. Lin, "Hybrid organic–inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface," Nanoscale 6 (2014) 3361.
[63] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan and Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials," Nano Lett. 13 (2013) 4393.
[64] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu and Z. L. Wang, "Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy," Adv. Mater. 30 (2018) 1705893.
[65] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji and C. Ye, "Flexible Si/PEDOT:PSS hybrid solar cells," Nano Res. 8 (2015) 3141.
[66] F. Bai, M. Li, D. Song, H. Yu, B. Jiang and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Appl. Surf. Sci. 273 (2013) 107.
[67] M. L. Brongersma, N. J. Halas and P. Nordlander, "Plasmon-induced hot carrier science and technology," Nature Nanotech. 10 (2015) 25.
[68] C. T. Yang, M. Pourhassan-Moghaddam, L. Wu, P. Bai and B. Thierry, "Ultrasensitive detection of cancer prognostic miRNA biomarkers based on surface plasmon enhanced light scattering," ACS Sens. 2 (2017) 635.
[69] C. Y. Chen, L. J. Hsu, P. H. Hsiao and C. T. R. Yu, "SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires," Appl. Surf. Sci. 355 (2015) 197.
[70] C. Mei, J. Zou, X. Huang, B. Zou, P. Zhou, Z. Gan, J. Hu, Q. Zhang and H. Wang, "High sensitive position-dependent photodetection observed in Cu-covered Si nanopyramids," Nanotechnology 29 (2018) 205203.
[71] Z. Yang, K. Du, F. Lu, Y. Pang, S. Hua, X. Gan, W. Zhang, S. J. Chua and T. Mei, "Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector," Photon. Res. 7 (2019) 294.
[72] P. Sarkar, S. Nath Surai, S. Panda, B. Maji and A. K. Mukhopadhyay,"Study on localized surface plasmon to improve photonic extinction in solar cell," Contemporary Advances in Innovative and Applicable Information Technology 812 (2019) 67.
[73] C. Duan, H. Wang, X. Ou, F. Li and X. Zhang, "Efficient visible light photocatalyst fabricated by depositing plasmonic Ag nanoparticles on conductive polymer-protected Si nanowire arrays for photoelectrochemical hydrogen generation," ACS Appl. Mater. Interfaces 6 (2014) 9742.
[74] C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao and B. Y. Man, "Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS," Sci. Rep. 6 (2016) 25243.
[75] V. S. Vendamani, S. V. S. N. Rao, S. V. Rao, D. Kanjilal and A. P. Pathak, "Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection," J. Appl. Phys. 123 (2018) 014301.
[76] R. Lu, J. Sha, W. Xia, Y. Fang, L. Gu and Y. Wang, "A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles," Crystengcomm 15 (2013) 6207.
[77] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim and H. H. Cho, "Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion," Int. J. Heat Mass Transfer 82 (2015) 267.
[78] P. Priambodo, N. Raden Poespawati and D. Hartanto, "Solar Cell," 2011.
[79] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu and D. Yang, "Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping," Adv. Mater. 6 (2018) 1700638.
[80] C. Scales and P. Berini, "Thin-film Schottky barrier photodetector models," IEEE J quantum elect. 46 (2010) 633.
[81] C. Y. Wu, Z. Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, L. Wang and L. B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector," J. Mater. Chem. C 4 (2016) 10804.
[82] T. Mueller, F. Xia and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nature Photon. 4 (2010) 297.
[83] H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu and A. J. N. M. L. Pan, "Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors," Nano-Micro Lett. 8 (2016) 29.
[84] S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nature Mater. 4 (2005) 138.
[85] V. Dhyani, M. Das, W. Uddin, P. K. Muduli and S. Das, "Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm," Appl. Phys. Lett. 114 (2019) 121101.
[86] X. Hu, Y. Dong, F. Huang, X. Gong and Y. Cao, "Solution-processed high-detectivity near-infrared polymer photodetectors fabricated by a novel low-bandgap semiconducting polymer," J. Phys. Chem. C 117 (2013) 6537.
[87] F. Acerbi, G. Paternoster, M. Capasso, M. Marcante, A. Mazzi, V. Regazzoni, N. Zorzi and A. Gola, "Silicon photomultipliers: technology optimizations for ultraviolet, visible and near-infrared range," Instruments 3(2019)152019.
[88] Z. Huang, Y. Mao, G. Lin, X. Yi, A. Chang, C. Li, S. Chen, W. Huang and J. Wang, "Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors," Opt. Express 26 (2018) 5827.
[89] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He and J. L. Sun, "Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array," ACS Appl. Mater. Interfaces 6 (2014) 20887.
[90] L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S. P. Lau, D. Wu and Y. H. Tsang, "Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm," NPG Asia Mater. 10 (2018) 352.
[91] R. Chen, B. Fan, M. Pan, Q. Cheng and C. Chen, "Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation," Mater. Lett. 163 (2016) 90.
[92] Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, "Room-temperature short-wavelength infrared Si photodetector," Sci. Rep. 7 (2017) 43688.
[93] X. Qiu, Z. Wang, X. Hou, X. Yu and D. Yang, "Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon," Photon. Res. 7 (2019) 351.
[94] L. Wang, S. J. He, K. Y. Wang, H. H. Luo, J. G. Hu, Y. Q. Yu, C. Xie, C. Y. Wu and L. B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector," Nanotechnology 29 (2018) 505203.
[95] W. Chen, T. Kan, Y. Ajiki, K. Matsumoto and I. Shimoyama, "NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR," Opt. Express 24 (2016) 25797.
[96] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu and Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection," Nanotechnology 28 (2017) 275202.
[97] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei and S. Chua, "Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure," Nanotechnology 30 (2019) 075204.
[98] P. L. Ong, W. B. Euler and I. A. Levitsky, "Carbon nanotube-Si diode as a detector of mid-infrared illumination," Appl. Phys. Lett. 96 (2010) 033106.
[99] X. An, F. Liu, Y. J. Jung and S. Kar, "Tunable graphene–silicon heterojunctions for ultrasensitive photodetection," Nano Lett. 13 (2013) 909.
[100] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang and Z. Zhao, "Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions," small 10 (2014) 2345.
[101] L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun and S. T. Lee, "MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors," Adv. Funct. Mater. 25 (2015) 2910.
[102] C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai and W. Xie, "Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering," ACS Appl. Mater. Interfaces 7 (2015) 25981.
[103] F. Cao, Q. Liao, K. Deng, L. Chen, L. Li and Y. Zhang, "Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors," Nano Res. 11 (2017) 1722.
[104] S. M. Hatch, J. Briscoe and S. Dunn, "A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response," Adv. Mater. 25 (2013) 867.
指導教授 鄭紹良 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明