參考文獻 |
[1] S. Lin, Y. Lu, S. Feng, Z. Hao and Y. Yan, "A high current density direct-current generator based on a moving van der Waals Schottky diode," Adv. Mater. 31 (2019) 1804398.
[2] A. R. Ullah, F. Meyer, J. G. Gluschke, S. Naureen, P. Caroff, P. Krogstrup, J. Nygård and A. P. Micolich, "P-GaAs nanowire metal–semiconductor field-effect transistors with near-thermal limit gating," Nano Lett. 18 (2018) 5673.
[3] S. A. Vanalakar, V. L. Patil, N. S. Harale, S. A. Vhanalakar, M. G. Gang, J. Y. Kim, P. S. Patil and J. H. Kim, "Controlled growth of ZnO nanorod arrays via wet chemical route for NO2 gas sensor applications," Sens. Actuators, B 221 (2015) 1195.
[4] K. Cui, A. S. Anisimov, T. Chiba, S. Fujii, H. Kataura, A. G. Nasibulin, S. Chiashi, E. I. Kauppinen and S. Maruyama, "Air-stable high-efficiency solar cells with dry-transferred single-walled carbon nanotube films," J. Mater. Chem. A 2 (2014) 11311.
[5] J. Bieker, F. Roustaie, H. Schlaak, C. Langer, R. Schreiner, M. Lotz and S. Wilfert, "Field emission characterization of in situ deposited gold nanocones with variable cone densities, " J. Vac. Sci. Technol. B 36 (2018) 02C105.
[6] H. D. Um, K. T. Park, J. Y. Jung, X. Li, K. Zhou, S. W. Jee and J. H. Lee, "Incorporation of a self-aligned selective emitter to realize highly efficient (12.8%) Si nanowire solar cells," Nanoscale 6 (2014) 5193.
[7] J. Y. Kim, J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee and Y. K. Choi, "Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor," Biosens. Bioelectron. 55 (2014) 162.
[8] Y. Chen, L. Liu, J. Xiong, T. Yang, Y. Qin and C. Yan, "Porous Si nanowires from cheap metallurgical silicon stabilized by a surface oxide layer for lithium ion batteries," Adv. Funct. Mater. 25 (2015) 6701.
[9] Y. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. Tien Chiu, C. Young Lee and I. N. Lin, "Stacked silicon nanowires with improved field enhancement factor," ACS Appl. Mater. Interfaces 2 (2010) 331.
[10] Z. Chen, M. Ning, G. Ma, Q. Meng, Y. Zhang, J. Gao, M. Jin, Z. Chen, M. Yuan, X. Wang, J. M. Liu and G. Zhou, "Effective silicon nanowire arrays/WO3 core/shell photoelectrode for neutral pH water splitting," Nanotechnology 28 (2017) 275401.
[11] J. Burm, K. I. Litvin, W. J. Schaff and L. F. Eastman, "Optimization of high-speed metal-semiconductor-metal photodetectors," Photon. Technol. Lett. 6 (1994) 722.
[12] N. Azadgar, N. Naderi and M. Eshraghi, "Effect of annealing of silver electrodes on photolithographically fabricated silicon trenches for photodetection applications," J. Electron. Mater. 47 (2018) 5212.
[13] A. Das Mahapatra, A. Das, S. Ghosh and D. Basak, "Defect-assisted broad-band photosensitivity with high responsivity in Au/self-seeded TiO2 NR/Au-based back-to-back Schottky junctions," ACS Omega 4 (2019) 1364.
[14] Y. Feng, C. He, Z. Xu, J. Hu and C. Peng, "A novel strategy to increase separated electron-hole dipoles in commercial Si based solar panel to assist photovoltaic effect," Mater. Res. Express 5 (2018) 015901.
[15] Z. Wang, R. Yu, X. Wang, W. Wu and Z. L. Wang, "Ultrafast response p-Si/n-ZnO heterojunction ultraviolet detector based on pyro-phototronic effect," Adv. Mater. 28 (2016) 6880.
[16] Y. Dai, X. Wang, W. Peng, H. Zou, R. Yu, Y. Ding, C. Wu and Z. L. Wang, "Largely improved near-infrared silicon-photosensing by the piezo-phototronic effect," ACS Nano. 11 (2017) 7118.
[17] N. Youngblood, C. Chen, S. J. Koester and M. Li, "Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current," Nature Photonics 9 (2015) 247.
[18] W. Peng, X. Wang, R. Yu, Y. Dai, H. Zou, A. C. Wang, Y. He and Z. L. Wang, "Enhanced performance of a self-powered organic/inorganic photodetector by pyro-phototronic and piezo-phototronic effects," Adv. Mater. 29 (2017) 1606698.
[19] P. Wang, Y. Liu, J. Yin, W. Ma, Z. Dong, W. Zhang, J. Zhu and J. Sun, "Tunable positive and negative photoconductive photodetector based on a gold/graphene/p-type silicon heterojunction," J. Mater. Chem. C 7 (2019) 887.
[20] S. Misra, L. Yu, M. Foldyna and P. Roca I Cabarrocas, "High efficiency and stable hydrogenated amorphous silicon radial junction solar cells built on VLS-grown silicon nanowires," Sol. Energy Mater. Sol. Cells 118 (2013) 90.
[21] L. Yu and P. Roca I Cabarrocas, "Morphology control and growth dynamics of in-plane solid–liquid–solid silicon nanowires," Physica E 44 (2012) 1045.
[22] R. Q. Zhang, Y. Lifshitz and S. T. Lee, "Oxide-assisted growth of semiconducting nanowires," Adv. Mater. 15 (2003) 635.
[23] X. Li and P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon," Appl. Phys. Lett. 77 (2000) 2572.
[24] H. Fang, Y. Wu, J. Zhao and J. Zhu, "Silver catalysis in the fabrication of silicon nanowire arrays," Nanotechnology 17 (2006) 3768.
[25] H. Asoh, F. Arai and S. Ono, "Effect of noble metal catalyst species on the morphology of macroporous silicon formed by metal-assisted chemical etching," Electrochim. Acta 54 (2009) 5142.
[26] S. Chattopadhyay, X. Li and P. W. Bohn, "In-plane control of morphology and tunable photoluminescence in porous silicon produced by metal-assisted electroless chemical etching," J. Appl. Phys. 91 (2002) 6134.
[27] Z. Huang, X. Zhang, M. Reiche, L. Liu, W. Lee, T. Shimizu, S. Senz and U. Gösele, "Extended arrays of vertically aligned sub-10 nm diameter [100] Si nanowires by metal-assisted chemical etching," Nano Lett. 8 (2008) 3046.
[28] N. Megouda, T. Hadjersi, G. Piret, R. Boukherroub and O. Elkechai, "Au-assisted electroless etching of silicon in aqueous HF/H2O2 solution," Appl. Surf. Sci. 255 (2009) 6210.
[29] H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang and J. H. He, "Periodic Si nanopillar arrays by anodic aluminum oxide template and catalytic etching for broadband and omnidirectional light harvesting," Opt. Express 20 (2012) A94.
[30] Z. Huang, H. Fang and J. Zhu, "Fabrication of silicon nanowire arrays with controlled diameter, length, and density," Adv. Mater. 19 (2007) 744.
[31] K. Q. Peng, Y. J. Yan, S. P. Gao and J. Zhu, "Synthesis of large-area silicon nanowire arrays via self-assembling nanoelectrochemistry," Adv. Mater. 14 (2002) 1164.
[32] S. Yae, Y. Morii, N. Fukumuro and H. Matsuda, "Catalytic activity of noble metals for metal-assisted chemical etching of silicon," Nanoscale Res. Lett. 7 (2012) 352.
[33] Y. Y. Song, Z. D. Gao, J. J. Kelly and X. H. Xia, "Galvanic deposition of nanostructured noble-metal films on silicon," Electrochem. Solid-State Lett. 8 (2005) C148.
[34] Z. R. Smith, R. L. Smith and S. D. Collins, "Mechanism of nanowire formation in metal assisted chemical etching," Electrochimi. Acta 92 (2013) 139.
[35] T. Qiu, X. L. Wu, G. G. Siu and P. K. Chu, "Ingrowth mechanism of silicon nanowiresand silver dendrites," J. Electron. Mater. 35 (2006) 10.
[36] S. L. Cheng, C. H. Chung and H. C. Lee, "A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001)Si substrates," J. Electrochem. Soc. 155 (2008) D711.
[37] S. Srivastava, D. Kumar, S. Schmitt, K. N Sood, S. Christiansen and P. Singh,"Large area fabrication of vertical silicon nanowire arrays by silver-assisted single-step chemical etching and their formation kinetics," Nanotechnology 25 (2014) 175601.
[38] M. L. Zhang, K. Q. Peng, X. Fan, J. S. Jie, R. Q. Zhang, S. T. Lee and N. B. Wong, "Preparation of large-area uniform silicon nanowires arrays through metal-assisted chemical etching," J. Phys. Chem. C 112 (2008) 4444.
[39] H. A. Chaliyawala, A. Ray, R. K. Pati and I. Mukhopadhyay, "Strong light absorption capability directed by structured profile of vertical Si nanowires," Opt. Mater. 73 (2017) 449.
[40] M. Ben Rabha, L. Khezami, A. B. Jemai, R. Alhathlool and A. Ajbar, "Surface passivation of silicon nanowires based metal nano-particle assisted chemical etching for photovoltaic applications," J. Cryst. Growth 462 (2017) 35.
[41] A. H. Chiou, T. C. Chien, C. K. Su, J. F. Lin and C. Y. Hsu, "The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching," Curr. Appl. Phys. 13 (2013) 717.
[42] C. Chartier, S. Bastide and C. Lévy Clément, "Metal-assisted chemical etching of silicon in HF–H2O2," Electrochimi. Acta 53 (2008) 5509.
[43] L. Lin, S. Guo, X. Sun, J. Feng and Y. Wang, "Synthesis and photoluminescence properties of porous silicon nanowire arrays," Nanoscale Res. Lett. 5 (2010) 1822.
[44] Y. Liu, G. Ji, J. Wang, X. Liang, Z. Zuo and Y. Shi, "Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration," Nanoscale Res. Lett. 7 (2012) 663.
[45] Z. Huang, T. Shimizu, S. Senz, Z. Zhang, N. Geyer and U. Gösele, "Oxidation rate effect on the direction of metal-assisted chemical and electrochemical etching of silicon," J. Phys. Chem. C 114 (2010) 10683.
[46] B. Ozdemir, M. Kulakci, R. Turan and H. E. Unalan, "Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires," Nanotechnology 22 (2011) 155606.
[47] J. Y. Jung, Z. Guo, S. W. Jee, H. D. Um, K. T. Park and J. H. Lee, "A strong antireflective solar cell prepared by tapering silicon nanowires," Opt. Express 18 (2010) A286.
[48] R. Lu, Y. Wang, L. Gu, W. Wang, Y. Fang and J. Sha, "Composite structure of SiO2@AgNPs@p-SiNWs for enhanced broadband optical antireflection," Opt. Express 21 (2013) 17484.
[49] L. Hao, H. Liu, H. Xu, S. Dong, Y. Du, Y. Wu, H. Zeng, J. Zhu and Y. Liu, "Flexible Pd-WS2/Si heterojunction sensors for highly sensitive detection of hydrogen at room temperature," Sens. Actuators, B 283 (2019) 740.
[50] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan and Y. Shi, "Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires," IEEE Electron Device Lett. 39 (2018) 1069.
[51] M. Hossain, G. S. Kumar, S. N. Barimar Prabhava, E. D. Sheerin, D. Mccloskey, S. Acharya, K. D. M. Rao and J. J. Boland, "Transparent, flexible silicon nanostructured wire networks with seamless junctions for high-performance photodetector applications," ACS Nano. 12 (2018) 4727.
[52] D. K. Kwon, S. J. Lee and J. M. Myoung, "High-performance flexible ZnO nanorod UV photodetectors with a network-structured Cu nanowire electrode," Nanoscale 8 (2016) 16677.
[53] Y. Liu, Y. Liu, S. Qin, Y. Xu, R. Zhang and F. Wang, "Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors," Nano Res. 10 (2017) 1880.
[54] G. Chen, Y. Yu, K. Zheng, T. Ding, W. Wang, Y. Jiang and Q. Yang, "Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible–NIR photodetectors," small 11 (2015) 2848.
[55] S. Lim, D. S. Um, M. Ha, Q. Zhang, Y. Lee, Y. Lin, Z. Fan and H. Ko, "Broadband omnidirectional light detection in flexible and hierarchical ZnO/Si heterojunction photodiodes," Nano Res. 10 (2017) 22.
[56] E. Mulazimoglu, S. Coskun, M. Gunoven, B. Butun, E. Ozbay, R. Turan and H. E. Unalan, "Silicon nanowire network metal-semiconductor-metal photodetectors," Appl. Phys. Lett. 103 (2013) 083114.
[57] D. H. Kim, W. Lee and J. M. Myoung, "Flexible multi-wavelength photodetector based on porous silicon nanowires," Nanoscale 10 (2018) 17705.
[58] J. M. Weisse, C. H. Lee, D. R. Kim and X. Zheng, "Fabrication of flexible and vertical silicon nanowire electronics," Nano Lett. 12 (2012) 3339.
[59] S. C. Shiu, S. C. Hung, J. J. Chao and C. F. Lin, "Massive transfer of vertically aligned Si nanowire array onto alien substrates and their characteristics," Appl. Surf. Sci. 255 (2009) 8566.
[60] S. Shu Chia, S. Hong Jhang, H. Shih Che and L. Ching Fuh, "Transfer of silicon nanowires onto alien substrates by controlling direction of metal-assisted etching," IEEE International Conference on Nanotechnology 10 (2010) 474.
[61] Y. R. Kang, S. C. Kang, K. K. Paek, Y. K. Kim, S. W. Kim and B. K. Ju, "Air-gap type film bulk acoustic resonator using flexible thin substrate," Sens. Actuators, A 117 (2005) 62.
[62] S. Thiyagu, C. C. Hsueh, C. T. Liu, H. J. Syu, T. C. Lin and C. F. Lin, "Hybrid organic–inorganic heterojunction solar cells with 12% efficiency by utilizing flexible film-silicon with a hierarchical surface," Nanoscale 6 (2014) 3361.
[63] S. Wang, B. D. Weil, Y. Li, K. X. Wang, E. Garnett, S. Fan and Y. Cui, "Large-area free-standing ultrathin single-crystal silicon as processable materials," Nano Lett. 13 (2013) 4393.
[64] Y. Dai, X. Wang, W. Peng, C. Xu, C. Wu, K. Dong, R. Liu and Z. L. Wang, "Self-powered Si/CdS flexible photodetector with broadband response from 325 to 1550 nm based on pyro-phototronic effect: An approach for photosensing below bandgap energy," Adv. Mater. 30 (2018) 1705893.
[65] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji and C. Ye, "Flexible Si/PEDOT:PSS hybrid solar cells," Nano Res. 8 (2015) 3141.
[66] F. Bai, M. Li, D. Song, H. Yu, B. Jiang and Y. Li, "Metal-assisted homogeneous etching of single crystal silicon: A novel approach to obtain an ultra-thin silicon wafer," Appl. Surf. Sci. 273 (2013) 107.
[67] M. L. Brongersma, N. J. Halas and P. Nordlander, "Plasmon-induced hot carrier science and technology," Nature Nanotech. 10 (2015) 25.
[68] C. T. Yang, M. Pourhassan-Moghaddam, L. Wu, P. Bai and B. Thierry, "Ultrasensitive detection of cancer prognostic miRNA biomarkers based on surface plasmon enhanced light scattering," ACS Sens. 2 (2017) 635.
[69] C. Y. Chen, L. J. Hsu, P. H. Hsiao and C. T. R. Yu, "SERS detection and antibacterial activity from uniform incorporation of Ag nanoparticles with aligned Si nanowires," Appl. Surf. Sci. 355 (2015) 197.
[70] C. Mei, J. Zou, X. Huang, B. Zou, P. Zhou, Z. Gan, J. Hu, Q. Zhang and H. Wang, "High sensitive position-dependent photodetection observed in Cu-covered Si nanopyramids," Nanotechnology 29 (2018) 205203.
[71] Z. Yang, K. Du, F. Lu, Y. Pang, S. Hua, X. Gan, W. Zhang, S. J. Chua and T. Mei, "Silica nanocone array as a template for fabricating a plasmon induced hot electron photodetector," Photon. Res. 7 (2019) 294.
[72] P. Sarkar, S. Nath Surai, S. Panda, B. Maji and A. K. Mukhopadhyay,"Study on localized surface plasmon to improve photonic extinction in solar cell," Contemporary Advances in Innovative and Applicable Information Technology 812 (2019) 67.
[73] C. Duan, H. Wang, X. Ou, F. Li and X. Zhang, "Efficient visible light photocatalyst fabricated by depositing plasmonic Ag nanoparticles on conductive polymer-protected Si nanowire arrays for photoelectrochemical hydrogen generation," ACS Appl. Mater. Interfaces 6 (2014) 9742.
[74] C. Zhang, S. Z. Jiang, C. Yang, C. H. Li, Y. Y. Huo, X. Y. Liu, A. H. Liu, Q. Wei, S. S. Gao, X. G. Gao and B. Y. Man, "Gold@silver bimetal nanoparticles/pyramidal silicon 3D substrate with high reproducibility for high-performance SERS," Sci. Rep. 6 (2016) 25243.
[75] V. S. Vendamani, S. V. S. N. Rao, S. V. Rao, D. Kanjilal and A. P. Pathak, "Three-dimensional hybrid silicon nanostructures for surface enhanced Raman spectroscopy based molecular detection," J. Appl. Phys. 123 (2018) 014301.
[76] R. Lu, J. Sha, W. Xia, Y. Fang, L. Gu and Y. Wang, "A 3D-SERS substrate with high stability: Silicon nanowire arrays decorated by silver nanoparticles," Crystengcomm 15 (2013) 6207.
[77] B. S. Kim, S. H. Tamboli, J. B. Han, T. Kim and H. H. Cho, "Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion," Int. J. Heat Mass Transfer 82 (2015) 267.
[78] P. Priambodo, N. Raden Poespawati and D. Hartanto, "Solar Cell," 2011.
[79] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu and D. Yang, "Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping," Adv. Mater. 6 (2018) 1700638.
[80] C. Scales and P. Berini, "Thin-film Schottky barrier photodetector models," IEEE J quantum elect. 46 (2010) 633.
[81] C. Y. Wu, Z. Q. Pan, Y. Y. Wang, C. W. Ge, Y. Q. Yu, J. Y. Xu, L. Wang and L. B. Luo, "Core–shell silicon nanowire array–Cu nanofilm Schottky junction for a sensitive self-powered near-infrared photodetector," J. Mater. Chem. C 4 (2016) 10804.
[82] T. Mueller, F. Xia and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nature Photon. 4 (2010) 297.
[83] H. Tan, C. Fan, L. Ma, X. Zhang, P. Fan, Y. Yang, W. Hu, H. Zhou, X. Zhuang, X. Zhu and A. J. N. M. L. Pan, "Single-crystalline InGaAs nanowires for room-temperature high-performance near-infrared photodetectors," Nano-Micro Lett. 8 (2016) 29.
[84] S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargent, "Solution-processed PbS quantum dot infrared photodetectors and photovoltaics," Nature Mater. 4 (2005) 138.
[85] V. Dhyani, M. Das, W. Uddin, P. K. Muduli and S. Das, "Self-powered room temperature broadband infrared photodetector based on MoSe2/germanium heterojunction with 35 A/W responsivity at 1550 nm," Appl. Phys. Lett. 114 (2019) 121101.
[86] X. Hu, Y. Dong, F. Huang, X. Gong and Y. Cao, "Solution-processed high-detectivity near-infrared polymer photodetectors fabricated by a novel low-bandgap semiconducting polymer," J. Phys. Chem. C 117 (2013) 6537.
[87] F. Acerbi, G. Paternoster, M. Capasso, M. Marcante, A. Mazzi, V. Regazzoni, N. Zorzi and A. Gola, "Silicon photomultipliers: technology optimizations for ultraviolet, visible and near-infrared range," Instruments 3(2019)152019.
[88] Z. Huang, Y. Mao, G. Lin, X. Yi, A. Chang, C. Li, S. Chen, W. Huang and J. Wang, "Low dark current broadband 360-1650 nm ITO/Ag/n-Si Schottky photodetectors," Opt. Express 26 (2018) 5827.
[89] Q. Hong, Y. Cao, J. Xu, H. Lu, J. He and J. L. Sun, "Self-powered ultrafast broadband photodetector based on p–n heterojunctions of CuO/Si nanowire array," ACS Appl. Mater. Interfaces 6 (2014) 20887.
[90] L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S. P. Lau, D. Wu and Y. H. Tsang, "Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm," NPG Asia Mater. 10 (2018) 352.
[91] R. Chen, B. Fan, M. Pan, Q. Cheng and C. Chen, "Room-temperature optoelectronic response of Ni supersaturated p-type Si processed by continuous-wave laser irradiation," Mater. Lett. 163 (2016) 90.
[92] Y. Berencén, S. Prucnal, F. Liu, I. Skorupa, R. Hübner, L. Rebohle, S. Zhou, H. Schneider, M. Helm and W. Skorupa, "Room-temperature short-wavelength infrared Si photodetector," Sci. Rep. 7 (2017) 43688.
[93] X. Qiu, Z. Wang, X. Hou, X. Yu and D. Yang, "Visible-blind short-wavelength infrared photodetector with high responsivity based on hyperdoped silicon," Photon. Res. 7 (2019) 351.
[94] L. Wang, S. J. He, K. Y. Wang, H. H. Luo, J. G. Hu, Y. Q. Yu, C. Xie, C. Y. Wu and L. B. Luo, "Dual-plasmonic Au/graphene/Au-enhanced ultrafast, broadband, self-driven silicon Schottky photodetector," Nanotechnology 29 (2018) 505203.
[95] W. Chen, T. Kan, Y. Ajiki, K. Matsumoto and I. Shimoyama, "NIR spectrometer using a Schottky photodetector enhanced by grating-based SPR," Opt. Express 24 (2016) 25797.
[96] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu and Y. Tu, "Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection," Nanotechnology 28 (2017) 275202.
[97] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei and S. Chua, "Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure," Nanotechnology 30 (2019) 075204.
[98] P. L. Ong, W. B. Euler and I. A. Levitsky, "Carbon nanotube-Si diode as a detector of mid-infrared illumination," Appl. Phys. Lett. 96 (2010) 033106.
[99] X. An, F. Liu, Y. J. Jung and S. Kar, "Tunable graphene–silicon heterojunctions for ultrasensitive photodetection," Nano Lett. 13 (2013) 909.
[100] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang and Z. Zhao, "Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions," small 10 (2014) 2345.
[101] L. Wang, J. Jie, Z. Shao, Q. Zhang, X. Zhang, Y. Wang, Z. Sun and S. T. Lee, "MoS2/Si heterojunction with vertically standing layered structure for ultrafast, high-detectivity, self-driven visible–near infrared photodetectors," Adv. Funct. Mater. 25 (2015) 2910.
[102] C. Zhao, Z. Liang, M. Su, P. Liu, W. Mai and W. Xie, "Self-powered, high-speed and visible–near infrared response of MoO3–x/n-Si heterojunction photodetector with enhanced performance by interfacial engineering," ACS Appl. Mater. Interfaces 7 (2015) 25981.
[103] F. Cao, Q. Liao, K. Deng, L. Chen, L. Li and Y. Zhang, "Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors," Nano Res. 11 (2017) 1722.
[104] S. M. Hatch, J. Briscoe and S. Dunn, "A self-powered ZnO-nanorod/CuSCN UV photodetector exhibiting rapid response," Adv. Mater. 25 (2013) 867.
|