博碩士論文 106324071 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.22.242.169
姓名 陳柏瑜(Bo-Yu Chen)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 奈米球微影術結合電化學沉積法製備規則有序陽極氧化鋁奈米模板及一維銅金屬奈米結構陣列之研究
(Fabrication of ordered anodic aluminum oxide nanotemplate and one dimensional Cu metal nanostructure arrays by nanosphere lithography combined with electrochemical deposition)
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 陽極氧化鋁由於其具備準直孔洞通道結構,可應用於過濾、抗反射塗層和奈米結構材料的模板等領域,近年來受到廣泛的研究。目前已有多種製造薄型陽極氧化鋁膜之技術被開發出來,例如:PMMA模板輔助法、離子束光刻法以及模板奈米壓印法等。然而這些製備之步驟繁瑣耗時長、無法製備大面積模板及製備成本昂貴,使得在實際應用上受到很大的限制。為克服相關製程限制,本研究首度利用單層奈米球陣列微影技術,藉由調控奈米球的直徑和陽極氧化蝕刻條件,成功地製備出孔徑和間距可調變之規則有序薄型陽極氧化鋁奈米模板。此外,銅金屬奈米線與奈米管,因其結構具有高準直性與高表面積之優點,被廣泛應用於光電元件、場發射、觸媒催化、水解產氫等領域上,然而如何精準控制所製備一維銅奈米結構之尺寸、形貌、排列週期性等,一直是急需克服的挑戰。因此,本研究也利用上述製程所製備之規則氧化鋁奈米模板進一步結合電化學沉積製程,可在具有導電性的各式基材上製備出一系列準直有序排列且內外徑可調變之一維銅金屬奈米線與奈米管陣列。而此所開發之新穎製程技術,相信將可應用於製備其他各式一維金屬或半導體奈米結構陣列。另外由於銅金屬奈米管的有序排列、高深寬比、中空狀結構等,具有極低啟動電場的優異電子場發射特性。實驗結果呈現出令人興奮的前景,這裡所提出的新方法將提供在製備一維銅金屬奈米管陣列結構基電子場發射源有序陣列的能力。
摘要(英) The anodic aluminum oxide (AAO) have been widely used as templates in nanotechnology. Due to their characteristic continuous, highly ordered pore structures, they have been utilized extensively in the fabrication of nanomaterials leading to various applications, such as separating, antireflection coating, and a template for synthesis of various nanostructures. To fabricate thin AAO templates with well-ordered nanopore arrays, a variety of patterning techniques have been developed. However, the low processing speed, high-cost, and operational complexity make them challenging to use. In this study, we propose a high throughput and low-cost nanopatterning approach to fabricate thin AAO templates, which is based on the nanosphere lithography with one-step anodization process. The pore diameter and inter-pore spacing can be readily controlled by adjusting the diameter of the nanospheres and the anodic etching conditions. In addition, copper metal nanowires and nanotubes are widely used in optoelectronic devices, field emission, catalyst catalysis and hydrogen evolution reaction due to their well-ordered and high surface area. However, how to accurately control the size, shape and periodicity of the prepared one-dimensional copper nanostructure has been a challenge. Herein we report a novel way to fabricate high filling, large-area, and uniform copper metal nanowires and nanotubes arrays by nanosphere lithography combined with electrochemical deposition technology. In addition, the copper metal nanotubes owing to their well-ordered arrangement, high aspect ratio, and hollow structure, exhibit excellent field-emission properties with a very low turn-on field. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate well-ordered arrays of copper metal nanotubes-based field emitters.
關鍵字(中) ★ 陽極氧化鋁
★ 銅金屬奈米結構
★ 奈米球微影術
關鍵字(英)
論文目次 第一章 前言及文獻回顧1
1-1 前言1
1-2陽極氧化鋁膜2
1-2-1陽極氧化鋁膜之發展背景2
1-2-2陽極氧化鋁膜成長機制3
1-2-3陽極氧化鋁膜成長控制變因5
1-2-4 陽極氧化鋁膜規則化孔洞製程6
1-3 自組裝奈米球微影術8
1-3-1 奈米球自組裝機制8
1-3-2奈米球微影術之發展8
1-3-3 利用奈米球微影術製備規則有序之奈米結構9
1-4 一維金屬奈米線與奈米管之製備9
1-5奈米模板製備金屬奈米管11
1-6場發射電極元件13
1-6-1場發射理論13
1-6-2 場發射應用14
1-7研究動機及目標 15
第二章 實驗步驟及實驗設備17
2-1 實驗步驟17
2-1-1 高純度金屬鋁片使用之前處理17
2-1-2 自組裝奈米球陣列模板製備18
2-1-3 氧電漿蝕刻調控奈米球模板尺寸18
2-1-4 蒸鍍氧化矽薄膜18
2-1-5 舉離奈米球模板19
2-1-6 製備試片工作電極19
2-1-7 製備規則有序陽極氧化鋁模板19
2-2 電化學沉積法製備一維銅金屬奈米管陣列20
2-3 實驗設備21
2-3-1 電子槍蒸鍍系統21
2-3-2 陽極氧化鋁膜製備系統21
2-3-3 電鍍沉積系統21
2-4 儀器分析實驗22
2-4-1掃描式電子顯微鏡22
2-4-2 穿透式電子顯微鏡22
2-4-3 原子力電子顯微鏡23
2-4-4 真空場發射特性量測系統24
第三章 結果與討論25
3-1 未定義凹槽之陽極氧化鋁膜製程分析25
3-2 金屬鋁片上製備奈米球模板之結構與分析26
3-3 製備具規則有序之陽極氧化鋁模板28
3-3-1 不同陽極處理電壓對陽極氧化鋁模生成之影響29
3-3-2 陽極氧化鋁膜生成之速率31
3-3-3 調控陽極氧化鋁膜之阻障層開孔尺寸之製程32
3-4 電化學沉積法製備一維銅金屬奈米結構陣列34
3-4-1 直流電鍍法製備銅金屬奈米線與奈米管之形貌與結構分析34
3-5 一維銅金屬奈米管之場發射性質量測35
第四章 結論及未來展望37
4-1 結論37
4-2 未來展望37
參考文獻39
表目錄48
圖目錄50
參考文獻 [1] P. Han, W. Martens, E. R. Waclawik, S. Sarina, and H. Zhu. “Metal nanoparticle photocatalysts: synthesis, characterization, and application,” Part. Part. Syst. Char. 35 (2018) 1700489.
[2] S. Pradhan, F. Di Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, and G. Konstantatos. “High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level,” Nat. Nanotechnol. 14 (2019) 72-79.
[3] T. Zhang, M. Y. Wu, D. Y. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling, and S. Z. Qiao. “Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution,” Nano Energy. 43 (2018) 103-109.
[4] J. Hajer, M. Kessel, C. Brune, M. P. Stehno, H. Buhmann, and L. W. Molenkamp. “Proximity-Induced superconductivity in CdTe-HgTe core-shell nanowires,” Nano Lett. 19 (2019) 4078-4082.
[5] M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai. “One-dimensional TiO2 nanotube photocatalysts for solar water splitting,” Adv. Sci. 4 (2017) 1600152.
[6] D. Wang, Y. Ha, J. Gu, Q. Li, L. Zhang, and P. Yang. “2D protein supramolecular nanofilm with exceptionally large area and emergent functions,” Adv. Mater. 28 (2016) 7414-23.
[7] V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufres, G. Gervais, R. Martel, and T. Szkopek. “Two-dimensional magnetotransport in a black phosphorus naked quantum well,” Nat. Commun. 6 (2015) 7702.
[8] H. L. Kang, J. B. Lao, Z. P. Li, W. Q. Yao, C. Liu, and J. Y. Wang. “Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles,” Appl. Surf. Sci. 388 (2016) 584-588.
[9] X. Chen, C. K. Y. Wong, C. A. Yuan, and G. Zhang. “Nanowire-based gas sensors,” Sens. Actuators, B : Chem. 177 (2013) 178-195.
[10] M. L. Moser, G. Li, M. Chen, E. Bekyarova, M. E. Itkis, and R. C. Haddon. “Fast electrochromic device based on single-walled carbon nanotube thin films,” Nano Lett. 16 (2016) 5386-93.
[11] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang. “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” Chem. Eng. Commun. 15 (2013) 1296-1306.
[12] L. Yang, Y. Lv, and D. Cao. “Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions,” J. Mater. Chem. A. 6 (2018) 3926-3932.
[13] J. Dai, J. Singh, and N. Yamamoto. “The effect of nano pore size and porosity on deformation behaviors of anodic aluminum oxide membranes,” SAMPE Seattle 2017 Conference & Exhibition (2017) 218-229.
[14] Q. Hao, H. Huang, X. Fan, X. Hou, Y. Yin, W. Li, L. Si, H. Nan, H. Wang, Y. Mei, T. Qiu, and P. K. Chu. “Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays,” Nanotechnology. 28 (2017) 105301.
[15] M. Jung, J. H. Kim, and Y. W. Choi. “Preparation of anodic aluminum oxide masks with size-controlled pores for 2Dplasmonic nanodot arrays,” J. Nanomater. 2018 (2018) 1-9.
[16] F. X. Jiang, D. Chen, G. W. Zhou, Y. N. Wang, and X. H. Xu. “The dramatic enhancement of ferromagnetism and band gap in Fe-doped In2O3 nanodot arrays,” Sci. Rep. 8 (2018) 2417.
[17] C. Y. Wang and H. X. He. “Tunable optical and magnetic properties of Ni-doped CuSe nanowires using an anodic aluminum oxide template assisted hydraulic method,” Nanotechnology. 30 (2019) 315704.
[18] S. Agarwal, D. Pohl, A. K. Patra, K. Nielsch, and M. S. Khatri. “Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires,” Mater. Chem. Phys. 230 (2019) 231-238.
[19] W. J. Stepniowski, M. Moneta, K. Karczewski, M. Michalska-Domanska, T. Czujko, J. M. C. Mol, and J. G. Buijnsters. “Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning,” J. Electroanal. Chem. 809 (2018) 59-66.
[20] A. Zhang, J. Zhou, P. Das, Y. Xiao, F. Gong, F. Li, L. Wang, L. Zhang, L. Wang, Y. Cao, and H. Duan. “Revisiting metal electrodeposition in porous anodic alumina: toward tailored preparation of metal nanotube arrays,” J. Electrochem. Soc. 165 (2018) D129-D134.
[21] Z. Zeng, R. Xu, H. Zhao, H. Zhang, L. Liu, S. Xu, and Y. Lei. “Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction,” Mater. Today Nano. 3 (2018) 54-68.
[22] X. Du, Y. Yang, C. Yi, Y. Chen, C. Cai, and Z. Zhang. “Electrodeposition of Ni and CeO(2)/Ni nanotubes for hydrogen evolution reaction electrode,” J. Nanosci. Nanotechno. 18 (2018) 4865-4875.
[23] L. Sacco, I. Florea, M. Châtelet, and C.-S. Cojocaru. “Electrical and morphological behavior of carbon nanotubes synthesized within porous anodic alumina templates,” J. Phys. Mater. 1 (2018).
[24] Y. Zhang, C. Cui, W. Yang, L. Kang, and M. Guo. “Study on the Tb–Dy–Fe–Co magnetic nanowires prepared by AAO template,” Mater. Lett. 237 (2019) 314-318.
[25] M. Drobek, J. H. Kim, M. Bechelany, C. Vallicari, A. Julbe, and S. S. Kim. “MOF-based membrane encapsulated Zno nanowires for enhanced gas sensor selectivity,” ACS Appl. Mater. Interfaces. 8 (2016) 8323-8.
[26] A. G. Ricciardulli, S. Yang, G. A. H. Wetzelaer, X. Feng, and P. W. M. Blom. “Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics,” Adv. Funct. Mater. 28 (2018).
[27] B. K. Gupta, G. Kedawat, P. Kumar, S. Singh, S. R. Suryawanshi, N. Agrawal, G. Gupta, A. R. Kim, R. K. Gupta, M. A. More, D. J. Late, and M. G. Hahm. “Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays,” RSC Adv. 6 (2016) 9932-9939.
[28] O. Jessensky, F. Müller, and U. Gösele. “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[29] G. E. Thompson. “Porous anodic alumina fabrication, characterization and applications,” Thin Solid Films. 297 (1997) 192-201
[30] F. Li, L. Zhang, and R. M. Metzger. “On the growth of highly ordered poresin anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
[31] J. Kim, S. Ganorkar, J. Choi, Y. H. Kim, and S. I. Kim. “Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization,” J. Nanosci. Nanotechnol. 17 (2017) 761-765.
[32] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, and L. Jin. “A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films,” Electrochim. Acta 178 (2015) 11-17.
[33] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele. “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84 (1998) 6023-6026.
[34] W. J. Stępniowski and Z. Bojar. “Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features,” Surf. Coat. Technol. 206 (2011) 265-272.
[35] K. B. Kim, B. C. Kim, S. J. Ha, and M. W. Cho. “Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy,” J. Mech. Sci. Technol. 31 (2017) 4387-4393.
[36] H. Masuda and K. Fukuda. “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Sci. 268 (1995) 1466-1468.
[37] W. Lee and S. J. Park. “Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures,” Chem. Rev. 114 (2014) 7487-556.
[38] C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, and J. P. Araujo. “Nanoporous alumina as templates for multifunctional applications,” Appl. Phys. Rev. 1 (2014).
[39] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura. “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 2770-2772.
[40] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura. “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. 78 (2001) 826-828.
[41] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura. “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13 (2001) 189.
[42] C. Y. Liu, A. Datta, and Y. L. Wang. “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78 (2001) 120-122.
[43] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marza´ n. “Directed self-assembly of nanoparticles,” ACS Nano. 4 (2010) 3591-3605.
[44] G. M. Whitesides and B. Grzybowski. “Self-assembly at all scales,” Sci. 295 (2002) 2418-2421.
[45] P. A. Kralchevsky and N. D. Denkov. “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6 (2001) 383-401.
[46] M. A. Wood. “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface. 4 (2007) 1-17.
[47] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama. “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(1992) 3183-3190.
[48] A. Purwidyantri, C. H. Chen, B. J. Hwang, J. D. Luo, C. C. Chiou, Y. C. Tian, C. Y. Lin, C. H. Cheng, and C. S. Lai. “Spin-coated Au-nanohole arrays engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electrochemical sensor,” Biosens. Bioelectron. 77 (2016) 1086-94.
[49] J. Aizenberg, P. V. Braun, and P. Wiltzius. “Patterned colloidal deposition controlled by electrostatic and capillary forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[50] K. Chen, B. B. Rajeeva, Z. Wu, M. Rukavina, T. D. Dao, S. Ishii, M. Aono, T. Nagao, and Y. Zheng. “Moiré nanosphere lithography,” ACS Nano. 9 (2015) 6031-6040.
[51] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides. “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[52] H. W. Deckman and J. H. Dunsmuir. “Natural lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[53] X. Chen, X. Wei, and K. Jiang. “The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography,” Nanotechnology. 20 (2009) 425605.
[54] R. P. V. Dutne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen. “Nanosphere lithography:size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[55] L. Wen, R. Xu, Y. Mi, and Y. Lei. “Multiple nanostructures based on anodized aluminium oxide templates,” Nat. Nanotechnol. 12 (2017) 244-250.
[56] L. D. Rafailović, C. Gammer, J. Srajer, T. Trišović, J. Rahel, and H. P. Karnthaler. “Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide,” RSC Adv. 6 (2016) 33348-33352.
[57] A.-H. A., Z. Z., W. C., T. S., V. R., and L. Y1. “Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning,” ACS Nano 9(2015) 8584-8591.
[58] A. L. Lipson, D. J. Comstock, and M. C. Hersam. “Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization,” Small. 5 (2009) 2807-11.
[59] X. Duan and C. M. Lieber. “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12 (2000) 298.
[60] Y. Wang, M. Hegde, S. Chen, P. Yin, and P. V. Radovanovic. “Control of the spontaneous formation of oxide overlayers on gap nanowires grown by physical vapor deposition,” AIMS Mater. Sci. 5 (2018) 105-115.
[61] C. Brun, P. H. Elchinger, G. Nonglaton, C. Tidiane-Diagne, R. Tiron, A. Thuaire, D. Gasparutto, and X. Baillin. “Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles,” Small. 13 (2017).
[62] M. Shariati and F. Khosravinejad. “The laser-assisted field effect transistor gas sensor based on morphological zinc-excited tin-doped In2O3 nanowires,” Surf. Rev. Lett. 24 (2017).
[63] J. S. Yu, H. S. Liu, X. G. Zhou, and H. L. Wang. “Growing SiC nanowires on modified SiC fibers surface via a chemical vapor deposition route,” IOP Conf. Ser.: Mater. Sci. Eng. 504 (2019).
[64] M. Zheng, Q. Jia, X. Liu, and G. Jia. “Synthesis of ultra-long aluminum nitride nanowires with excellent photoluminescent property by aluminum chloride assisted chemical vapor reaction technique,” Ceram. Int. 45 (2019) 12387-12392.
[65] Y. You, M. Mayyas, S. Xu, I. Mansuri, V. Gaikwad, P. Munroe, V. Sahajwalla, and R. K. Joshi. “Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method,” Green Chem. 19 (2017) 5599-5607.
[66] X. Li, N. Kim, S. Youn, T. K. An, J. Kim, S. Lim, and S. H. Kim. “Sol(-)gel-processed organic(-)inorganic hybrid for flexible conductive substrates based on gravure-printed silver nanowires and graphene,” Polymers. 11 (2019).
[67] H. Lin, H. Li, Q. Shen, X. Shi, X. Tian, and L. Guo. “Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reduction,” Mater. Lett. 212 (2018) 86-89.
[68] Y. R. Jo, S. H. Myeong, and B. J. Kim. “Role of annealing temperature on the sol–gel synthesis of VO2 nanowires with in situ characterization of their metal–insulator transition,” RSC Adv. 8 (2018) 5158-5165.
[69] M. Song, J. Lee, B. Wang, B. A. Legg, S. Hu, J. Chun, and D. Li. “In situ characterization of kinetics and mass transport of PbSe nanowire growth via LS and VLS mechanisms,” Nanoscale. 11 (2019) 5874-5878.
[70] H. J. Fan, P. Werner, and M. Zacharias. “Semiconductor nanowires: from self-organization to patterned growth,” Small. 2 (2006) 700-17.
[71] W. Lu and C. M. Lieber. “Semiconductor nanowires,” J. Phys. D: Appl. Phys. 39 (2006) R387-R406.
[72] T. Ishiyama, S. Nakagawa, T. Wakamatsu, and N. Fujiwara. “Synthesis of β-FeSi2 nanowires by using silicon nanowire templates,” AIP Adv. 8 (2018).
[73] M. P. Zach, K. H. Ng, and R. M. Penner. “Molybdenum nanowires by electrodeposition,” Sci. 290 (2000) 2120.
[74] M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, and R. M. Penner. “Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration,” Chem. Mater. 14 (2002) 3206-3216.
[75] H. W. Shin and J. Y. Son. “Magnetic domain structure and magnetic anisotropy in ferromagnetic Y3Fe5O12 nanowires formed by step-edge decoration,” J. Magn. Magn. Mater. 444 (2017) 102-105.
[76] X. Zhu, J. Fan, Y. Zhang, H. Zhu, B. Dai, M. Yan, and Y. Ren. “Preparation of superparamagnetic and flexible γ-Fe2O3 nanowire arrays in an anodic aluminum oxide template,” J. Mater. Sci. 52 (2017) 12717-12723.
[77] J. E. Graves, M. E. A. Bowker, A. Summer, A. Greenwood, C. Ponce de León, and F. C. Walsh. “A new procedure for the template synthesis of metal nanowires,” Electrochem. Commun. 87 (2018) 58-62.
[78] K. Blagg, T. Greymountain, W. Kern, and M. Singh. “Template-based electrodeposition and characterization of niobium nanowires,” Electrochem. Commun. 101 (2019) 39-42.
[79] Q. Xu, G. Meng, and F. Han. “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater Sci. 95 (2018) 243-285.
[80] S. Kumar, T. W. Kang, P. Y. Khan, S. Kumar, M. Goyal, and R. K. Choubey. “Study of electroless template synthesized ZnSe nanowires and its characterization,” J. Mater. Sci. - Mater. Electron. 25 (2013) 957-961.
[81] T. Hussain, A. T. Shah, K. Shehzad, A. Mujahid, Z. H. Farooqi, M. H. Raza, M. N. Ahmed, and Z. U. Nisa. “Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires,” Int. Nano Lett. 5 (2014) 37-41.
[82] Y. Wang, S. Gong, D. Gomez, Y. Ling, L. W. Yap, G. P. Simon, and W. Cheng. “Unconventional janus properties of Enokitake-like gold nanowire films,” ACS Nano. 12 (2018) 8717-8722.
[83] N. Dadvand and G. J. Kipouros. “Electroless fabrication of cobalt alloys nanowires within alumina template,” J. Nanomater. 2007 (2007) 1-6.
[84] L. Gu, D. Zhang, M. Kam, Q. Zhang, S. Poddar, Y. Fu, X. Mo, and Z. Fan. “Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates,” Nanoscale. 10 (2018) 15164-15172.
[85] S. Sanjay, P. Kandasamy, S. Singh, and K. Baskar, Growth and characterization of gallium nitride nanowires on nickel/sapphire template by chemical vapour deposition, in The Physics of Semiconductor Devices. 2019. p. 249-254.
[86] J. Zhang, L. Jin, S. Li, J. Xie, F. Yang, J. Duan, T.-H. Shen, and H. Wang. “Fabrication of two types of ordered inp nanowire arrays on a single anodic aluminum oxide template and its application in solar cells,” J. Mater. Sci. Technol. 31 (2015) 634-638.
[87] J. Guiliani, J. Cadena, and C. Monton. “Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates,” Nanotechnology. 29 (2018) 075301.
[88] H. Zhang, W. Jia, H. Sun, L. Guo, and J. Sun. “Growth mechanism and magnetic properties of Co nanowire arrays by AC electrodeposition,” J. Magn. Magn. Mater. 468 (2018) 188-192.
[89] P. G. Schiavi, A. Rubino, P. Altimari, and F. Pagnanelli, Two electrodeposition strategies for the morphology-controlled synthesis of cobalt nanostructures, in AIP Conf. Proc. 2018. p. 020005.
[90] M. I. Irshad, F. Ahmad, N. M. Mohamed, and M. Z. Abdullah. “Preparation and structural characterization of template assisted electrodeposited copper nanowires,” Int. J. Electrochem. Sci. 9 (2014) 2548 - 2555.
[91] C. J. Brumlik and C. R. Martin. “Template synthesis of metal microtubules,” J. Am. Chem. Soc. 113 (1991) 3174-3175.
[92] M. Wirtz and C. R. Martin. “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. 15 (2003) 455.
[93] Q. Wang, G. Wang, X. Han, X. Wang, and J. G. Hou. “Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays : a one-step coelectrodeposition and electrochemical etching method,” J. Phys. Chem. B 109 (2005) 23326-23329.
[94] H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, and X. Liu. “Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays,” Chem. Phys. Chem. 7 (2006) 1500-4.
[95] G. Song, X. She, Z. Fu, and J. Li. “Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques,” J. Mater. Res. 19 (2004) 3324-3328.
[96] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue. “An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method,” Adv. Mater. 18 (2006) 2161-2164.
[97] R. H. Fowler and L. Nordheim. “Electron emission in intense electric fields,” R. Soc. London. A11 (1928) 173-181.
[98] V. M. Aguero and R. C. Adamo. “Space applications of spindt cathode field emission arrays,” Spacecraft Charging Technology Conference. 6 (2000) 347-352.
[99] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim. “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999) 3129-3131.
[100] B. R. Huang, C. S. Yeh, D. C. Wang, J. T. Tan, and J. Sung. “Field emission studies of amorphous carbon deposited on copper nanowires grown by cathodic arc plasma deposition,” New Carbon Mater. 24 (2009) 97-101.
[101] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang. “Large-area nanowire arrays of Molybdenum and Molybdenum oxides: synthesis and field emission properties,” Adv. Mater. 15 (2003) 1835-1840.
[102] L. Vila, P. Vincent, L. D. D. Pra, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, and P. Legagneux. “Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays,” Nano Lett. 4 (2004) 521-524.
[103] A. Dangwal, C. S. Pandey, G. Müller, S. Karim, T. W. Cornelius, and C. Trautmann. “Field emission properties of electrochemically deposited gold nanowires,” Appl. Phys. Lett. 92 (2008).
[104] I. Chakraborty and P. Ayyub. “Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics,” Nanotechnology. 23 (2012) 015704.
[105] A. Apte, P. Joshi, P. Bhaskar, D. Joag, and S. Kulkarni. “Vertically aligned self-assembled gold nanorods as low turn-on, stable field emitters,” Appl. Surf. Sci. 355 (2015) 978-983.
[106] J.-H. Wang, T.-H. Yang, W.-W. Wu, L.-J. Chen, C.-H. Chen, and C.-J. Chu. “Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics,” Nanotechnology. 17 (2006) 719-722.
[107] I. C. Chang, T. K. Huang, H. K. Lin, Y. F. Tzeng, C. W. Peng, F. M. Pan, C. Y. Lee, and H. T. Chiu. “Growth of pagoda-topped tetragonal copper nanopillar arrays,” ACS Appl. Mater. Interfaces. 1 (2009) 1375-8.
[108] G. S. Sekhon, S. Kumar, C. Kaur, N. K. Verma, C.-H. Lu, and S. K. Chakarvarti. “An efficient novel low voltage field electron emitter with cathode consisting of template synthesized copper microarrays,” J. Mater. Sci. - Mater. Electron. 22 (2011) 1725-1729.
[109] R. Gupta, R. P. Chauhan, S. K. Chakarvarti, M. K. Jaiswal, D. Ghoshal, S. Basu, S. Suresh, S. F. Bartolucci, N. Koratkar, and R. Kumar. “Enhanced field emission from copper nanowires synthesized using ion track-etch membranes as scaffolds,” J. Mater. Sci. - Mater. Electron. 29 (2018) 19013-19027.
指導教授 鄭紹良 審核日期 2019-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明