參考文獻 |
[1] P. Han, W. Martens, E. R. Waclawik, S. Sarina, and H. Zhu. “Metal nanoparticle photocatalysts: synthesis, characterization, and application,” Part. Part. Syst. Char. 35 (2018) 1700489.
[2] S. Pradhan, F. Di Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, and G. Konstantatos. “High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level,” Nat. Nanotechnol. 14 (2019) 72-79.
[3] T. Zhang, M. Y. Wu, D. Y. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling, and S. Z. Qiao. “Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution,” Nano Energy. 43 (2018) 103-109.
[4] J. Hajer, M. Kessel, C. Brune, M. P. Stehno, H. Buhmann, and L. W. Molenkamp. “Proximity-Induced superconductivity in CdTe-HgTe core-shell nanowires,” Nano Lett. 19 (2019) 4078-4082.
[5] M. Ge, Q. Li, C. Cao, J. Huang, S. Li, S. Zhang, Z. Chen, K. Zhang, S. S. Al-Deyab, and Y. Lai. “One-dimensional TiO2 nanotube photocatalysts for solar water splitting,” Adv. Sci. 4 (2017) 1600152.
[6] D. Wang, Y. Ha, J. Gu, Q. Li, L. Zhang, and P. Yang. “2D protein supramolecular nanofilm with exceptionally large area and emergent functions,” Adv. Mater. 28 (2016) 7414-23.
[7] V. Tayari, N. Hemsworth, I. Fakih, A. Favron, E. Gaufres, G. Gervais, R. Martel, and T. Szkopek. “Two-dimensional magnetotransport in a black phosphorus naked quantum well,” Nat. Commun. 6 (2015) 7702.
[8] H. L. Kang, J. B. Lao, Z. P. Li, W. Q. Yao, C. Liu, and J. Y. Wang. “Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles,” Appl. Surf. Sci. 388 (2016) 584-588.
[9] X. Chen, C. K. Y. Wong, C. A. Yuan, and G. Zhang. “Nanowire-based gas sensors,” Sens. Actuators, B : Chem. 177 (2013) 178-195.
[10] M. L. Moser, G. Li, M. Chen, E. Bekyarova, M. E. Itkis, and R. C. Haddon. “Fast electrochromic device based on single-walled carbon nanotube thin films,” Nano Lett. 16 (2016) 5386-93.
[11] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang. “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” Chem. Eng. Commun. 15 (2013) 1296-1306.
[12] L. Yang, Y. Lv, and D. Cao. “Co,N-codoped nanotube/graphene 1D/2D heterostructure for efficient oxygen reduction and hydrogen evolution reactions,” J. Mater. Chem. A. 6 (2018) 3926-3932.
[13] J. Dai, J. Singh, and N. Yamamoto. “The effect of nano pore size and porosity on deformation behaviors of anodic aluminum oxide membranes,” SAMPE Seattle 2017 Conference & Exhibition (2017) 218-229.
[14] Q. Hao, H. Huang, X. Fan, X. Hou, Y. Yin, W. Li, L. Si, H. Nan, H. Wang, Y. Mei, T. Qiu, and P. K. Chu. “Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays,” Nanotechnology. 28 (2017) 105301.
[15] M. Jung, J. H. Kim, and Y. W. Choi. “Preparation of anodic aluminum oxide masks with size-controlled pores for 2Dplasmonic nanodot arrays,” J. Nanomater. 2018 (2018) 1-9.
[16] F. X. Jiang, D. Chen, G. W. Zhou, Y. N. Wang, and X. H. Xu. “The dramatic enhancement of ferromagnetism and band gap in Fe-doped In2O3 nanodot arrays,” Sci. Rep. 8 (2018) 2417.
[17] C. Y. Wang and H. X. He. “Tunable optical and magnetic properties of Ni-doped CuSe nanowires using an anodic aluminum oxide template assisted hydraulic method,” Nanotechnology. 30 (2019) 315704.
[18] S. Agarwal, D. Pohl, A. K. Patra, K. Nielsch, and M. S. Khatri. “Preparation and nanoscale characterization of electrodeposited CoFe-Cu multilayer nanowires,” Mater. Chem. Phys. 230 (2019) 231-238.
[19] W. J. Stepniowski, M. Moneta, K. Karczewski, M. Michalska-Domanska, T. Czujko, J. M. C. Mol, and J. G. Buijnsters. “Fabrication of copper nanowires via electrodeposition in anodic aluminum oxide templates formed by combined hard anodizing and electrochemical barrier layer thinning,” J. Electroanal. Chem. 809 (2018) 59-66.
[20] A. Zhang, J. Zhou, P. Das, Y. Xiao, F. Gong, F. Li, L. Wang, L. Zhang, L. Wang, Y. Cao, and H. Duan. “Revisiting metal electrodeposition in porous anodic alumina: toward tailored preparation of metal nanotube arrays,” J. Electrochem. Soc. 165 (2018) D129-D134.
[21] Z. Zeng, R. Xu, H. Zhao, H. Zhang, L. Liu, S. Xu, and Y. Lei. “Exploration of nanowire- and nanotube-based electrocatalysts for oxygen reduction and oxygen evolution reaction,” Mater. Today Nano. 3 (2018) 54-68.
[22] X. Du, Y. Yang, C. Yi, Y. Chen, C. Cai, and Z. Zhang. “Electrodeposition of Ni and CeO(2)/Ni nanotubes for hydrogen evolution reaction electrode,” J. Nanosci. Nanotechno. 18 (2018) 4865-4875.
[23] L. Sacco, I. Florea, M. Châtelet, and C.-S. Cojocaru. “Electrical and morphological behavior of carbon nanotubes synthesized within porous anodic alumina templates,” J. Phys. Mater. 1 (2018).
[24] Y. Zhang, C. Cui, W. Yang, L. Kang, and M. Guo. “Study on the Tb–Dy–Fe–Co magnetic nanowires prepared by AAO template,” Mater. Lett. 237 (2019) 314-318.
[25] M. Drobek, J. H. Kim, M. Bechelany, C. Vallicari, A. Julbe, and S. S. Kim. “MOF-based membrane encapsulated Zno nanowires for enhanced gas sensor selectivity,” ACS Appl. Mater. Interfaces. 8 (2016) 8323-8.
[26] A. G. Ricciardulli, S. Yang, G. A. H. Wetzelaer, X. Feng, and P. W. M. Blom. “Hybrid silver nanowire and graphene-based solution-processed transparent electrode for organic optoelectronics,” Adv. Funct. Mater. 28 (2018).
[27] B. K. Gupta, G. Kedawat, P. Kumar, S. Singh, S. R. Suryawanshi, N. Agrawal, G. Gupta, A. R. Kim, R. K. Gupta, M. A. More, D. J. Late, and M. G. Hahm. “Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays,” RSC Adv. 6 (2016) 9932-9939.
[28] O. Jessensky, F. Müller, and U. Gösele. “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett. 72 (1998) 1173-1175.
[29] G. E. Thompson. “Porous anodic alumina fabrication, characterization and applications,” Thin Solid Films. 297 (1997) 192-201
[30] F. Li, L. Zhang, and R. M. Metzger. “On the growth of highly ordered poresin anodized aluminum oxide,” Chem. Mater. 10 (1998) 2470.
[31] J. Kim, S. Ganorkar, J. Choi, Y. H. Kim, and S. I. Kim. “Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization,” J. Nanosci. Nanotechnol. 17 (2017) 761-765.
[32] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, and L. Jin. “A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films,” Electrochim. Acta 178 (2015) 11-17.
[33] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele. “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys. 84 (1998) 6023-6026.
[34] W. J. Stępniowski and Z. Bojar. “Synthesis of anodic aluminum oxide (AAO) at relatively high temperatures. Study of the influence of anodization conditions on the alumina structural features,” Surf. Coat. Technol. 206 (2011) 265-272.
[35] K. B. Kim, B. C. Kim, S. J. Ha, and M. W. Cho. “Effect of pre-treatment polishing on fabrication of anodic aluminum oxide using commercial aluminum alloy,” J. Mech. Sci. Technol. 31 (2017) 4387-4393.
[36] H. Masuda and K. Fukuda. “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Sci. 268 (1995) 1466-1468.
[37] W. Lee and S. J. Park. “Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures,” Chem. Rev. 114 (2014) 7487-556.
[38] C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, and J. P. Araujo. “Nanoporous alumina as templates for multifunctional applications,” Appl. Phys. Rev. 1 (2014).
[39] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura. “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett. 71 (1997) 2770-2772.
[40] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura. “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett. 78 (2001) 826-828.
[41] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura. “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater. 13 (2001) 189.
[42] C. Y. Liu, A. Datta, and Y. L. Wang. “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett. 78 (2001) 120-122.
[43] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marza´ n. “Directed self-assembly of nanoparticles,” ACS Nano. 4 (2010) 3591-3605.
[44] G. M. Whitesides and B. Grzybowski. “Self-assembly at all scales,” Sci. 295 (2002) 2418-2421.
[45] P. A. Kralchevsky and N. D. Denkov. “Capillary forces and structuring in layers of colloid particles,” Curr. Opin. Colloid Interface Sci. 6 (2001) 383-401.
[46] M. A. Wood. “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface. 4 (2007) 1-17.
[47] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama. “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir 8(1992) 3183-3190.
[48] A. Purwidyantri, C. H. Chen, B. J. Hwang, J. D. Luo, C. C. Chiou, Y. C. Tian, C. Y. Lin, C. H. Cheng, and C. S. Lai. “Spin-coated Au-nanohole arrays engineered by nanosphere lithography for a Staphylococcus aureus 16S rRNA electrochemical sensor,” Biosens. Bioelectron. 77 (2016) 1086-94.
[49] J. Aizenberg, P. V. Braun, and P. Wiltzius. “Patterned colloidal deposition controlled by electrostatic and capillary forces,” Phys. Rev. Lett. 84 (2000) 2997-3000.
[50] K. Chen, B. B. Rajeeva, Z. Wu, M. Rukavina, T. D. Dao, S. Ishii, M. Aono, T. Nagao, and Y. Zheng. “Moiré nanosphere lithography,” ACS Nano. 9 (2015) 6031-6040.
[51] A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides. “Directed self-assembly of spherical particles on patterned electrodes by an applied electric field,” Adv. Mater. 17 (2005) 1507-1511.
[52] H. W. Deckman and J. H. Dunsmuir. “Natural lithography,” Appl. Phys. Lett. 41 (1982) 377-379.
[53] X. Chen, X. Wei, and K. Jiang. “The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography,” Nanotechnology. 20 (2009) 425605.
[54] R. P. V. Dutne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen. “Nanosphere lithography:size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem. B 103 (1999) 3854-3863.
[55] L. Wen, R. Xu, Y. Mi, and Y. Lei. “Multiple nanostructures based on anodized aluminium oxide templates,” Nat. Nanotechnol. 12 (2017) 244-250.
[56] L. D. Rafailović, C. Gammer, J. Srajer, T. Trišović, J. Rahel, and H. P. Karnthaler. “Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide,” RSC Adv. 6 (2016) 33348-33352.
[57] A.-H. A., Z. Z., W. C., T. S., V. R., and L. Y1. “Facile transferring of wafer-scale ultrathin alumina membranes onto substrates for nanostructure patterning,” ACS Nano 9(2015) 8584-8591.
[58] A. L. Lipson, D. J. Comstock, and M. C. Hersam. “Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization,” Small. 5 (2009) 2807-11.
[59] X. Duan and C. M. Lieber. “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12 (2000) 298.
[60] Y. Wang, M. Hegde, S. Chen, P. Yin, and P. V. Radovanovic. “Control of the spontaneous formation of oxide overlayers on gap nanowires grown by physical vapor deposition,” AIMS Mater. Sci. 5 (2018) 105-115.
[61] C. Brun, P. H. Elchinger, G. Nonglaton, C. Tidiane-Diagne, R. Tiron, A. Thuaire, D. Gasparutto, and X. Baillin. “Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles,” Small. 13 (2017).
[62] M. Shariati and F. Khosravinejad. “The laser-assisted field effect transistor gas sensor based on morphological zinc-excited tin-doped In2O3 nanowires,” Surf. Rev. Lett. 24 (2017).
[63] J. S. Yu, H. S. Liu, X. G. Zhou, and H. L. Wang. “Growing SiC nanowires on modified SiC fibers surface via a chemical vapor deposition route,” IOP Conf. Ser.: Mater. Sci. Eng. 504 (2019).
[64] M. Zheng, Q. Jia, X. Liu, and G. Jia. “Synthesis of ultra-long aluminum nitride nanowires with excellent photoluminescent property by aluminum chloride assisted chemical vapor reaction technique,” Ceram. Int. 45 (2019) 12387-12392.
[65] Y. You, M. Mayyas, S. Xu, I. Mansuri, V. Gaikwad, P. Munroe, V. Sahajwalla, and R. K. Joshi. “Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method,” Green Chem. 19 (2017) 5599-5607.
[66] X. Li, N. Kim, S. Youn, T. K. An, J. Kim, S. Lim, and S. H. Kim. “Sol(-)gel-processed organic(-)inorganic hybrid for flexible conductive substrates based on gravure-printed silver nanowires and graphene,” Polymers. 11 (2019).
[67] H. Lin, H. Li, Q. Shen, X. Shi, X. Tian, and L. Guo. “Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reduction,” Mater. Lett. 212 (2018) 86-89.
[68] Y. R. Jo, S. H. Myeong, and B. J. Kim. “Role of annealing temperature on the sol–gel synthesis of VO2 nanowires with in situ characterization of their metal–insulator transition,” RSC Adv. 8 (2018) 5158-5165.
[69] M. Song, J. Lee, B. Wang, B. A. Legg, S. Hu, J. Chun, and D. Li. “In situ characterization of kinetics and mass transport of PbSe nanowire growth via LS and VLS mechanisms,” Nanoscale. 11 (2019) 5874-5878.
[70] H. J. Fan, P. Werner, and M. Zacharias. “Semiconductor nanowires: from self-organization to patterned growth,” Small. 2 (2006) 700-17.
[71] W. Lu and C. M. Lieber. “Semiconductor nanowires,” J. Phys. D: Appl. Phys. 39 (2006) R387-R406.
[72] T. Ishiyama, S. Nakagawa, T. Wakamatsu, and N. Fujiwara. “Synthesis of β-FeSi2 nanowires by using silicon nanowire templates,” AIP Adv. 8 (2018).
[73] M. P. Zach, K. H. Ng, and R. M. Penner. “Molybdenum nanowires by electrodeposition,” Sci. 290 (2000) 2120.
[74] M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, and R. M. Penner. “Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration,” Chem. Mater. 14 (2002) 3206-3216.
[75] H. W. Shin and J. Y. Son. “Magnetic domain structure and magnetic anisotropy in ferromagnetic Y3Fe5O12 nanowires formed by step-edge decoration,” J. Magn. Magn. Mater. 444 (2017) 102-105.
[76] X. Zhu, J. Fan, Y. Zhang, H. Zhu, B. Dai, M. Yan, and Y. Ren. “Preparation of superparamagnetic and flexible γ-Fe2O3 nanowire arrays in an anodic aluminum oxide template,” J. Mater. Sci. 52 (2017) 12717-12723.
[77] J. E. Graves, M. E. A. Bowker, A. Summer, A. Greenwood, C. Ponce de León, and F. C. Walsh. “A new procedure for the template synthesis of metal nanowires,” Electrochem. Commun. 87 (2018) 58-62.
[78] K. Blagg, T. Greymountain, W. Kern, and M. Singh. “Template-based electrodeposition and characterization of niobium nanowires,” Electrochem. Commun. 101 (2019) 39-42.
[79] Q. Xu, G. Meng, and F. Han. “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater Sci. 95 (2018) 243-285.
[80] S. Kumar, T. W. Kang, P. Y. Khan, S. Kumar, M. Goyal, and R. K. Choubey. “Study of electroless template synthesized ZnSe nanowires and its characterization,” J. Mater. Sci. - Mater. Electron. 25 (2013) 957-961.
[81] T. Hussain, A. T. Shah, K. Shehzad, A. Mujahid, Z. H. Farooqi, M. H. Raza, M. N. Ahmed, and Z. U. Nisa. “Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires,” Int. Nano Lett. 5 (2014) 37-41.
[82] Y. Wang, S. Gong, D. Gomez, Y. Ling, L. W. Yap, G. P. Simon, and W. Cheng. “Unconventional janus properties of Enokitake-like gold nanowire films,” ACS Nano. 12 (2018) 8717-8722.
[83] N. Dadvand and G. J. Kipouros. “Electroless fabrication of cobalt alloys nanowires within alumina template,” J. Nanomater. 2007 (2007) 1-6.
[84] L. Gu, D. Zhang, M. Kam, Q. Zhang, S. Poddar, Y. Fu, X. Mo, and Z. Fan. “Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates,” Nanoscale. 10 (2018) 15164-15172.
[85] S. Sanjay, P. Kandasamy, S. Singh, and K. Baskar, Growth and characterization of gallium nitride nanowires on nickel/sapphire template by chemical vapour deposition, in The Physics of Semiconductor Devices. 2019. p. 249-254.
[86] J. Zhang, L. Jin, S. Li, J. Xie, F. Yang, J. Duan, T.-H. Shen, and H. Wang. “Fabrication of two types of ordered inp nanowire arrays on a single anodic aluminum oxide template and its application in solar cells,” J. Mater. Sci. Technol. 31 (2015) 634-638.
[87] J. Guiliani, J. Cadena, and C. Monton. “Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates,” Nanotechnology. 29 (2018) 075301.
[88] H. Zhang, W. Jia, H. Sun, L. Guo, and J. Sun. “Growth mechanism and magnetic properties of Co nanowire arrays by AC electrodeposition,” J. Magn. Magn. Mater. 468 (2018) 188-192.
[89] P. G. Schiavi, A. Rubino, P. Altimari, and F. Pagnanelli, Two electrodeposition strategies for the morphology-controlled synthesis of cobalt nanostructures, in AIP Conf. Proc. 2018. p. 020005.
[90] M. I. Irshad, F. Ahmad, N. M. Mohamed, and M. Z. Abdullah. “Preparation and structural characterization of template assisted electrodeposited copper nanowires,” Int. J. Electrochem. Sci. 9 (2014) 2548 - 2555.
[91] C. J. Brumlik and C. R. Martin. “Template synthesis of metal microtubules,” J. Am. Chem. Soc. 113 (1991) 3174-3175.
[92] M. Wirtz and C. R. Martin. “Template-fabricated gold nanowires and nanotubes,” Adv. Mater. 15 (2003) 455.
[93] Q. Wang, G. Wang, X. Han, X. Wang, and J. G. Hou. “Controllable template synthesis of Ni/Cu nanocable and Ni nanotube arrays : a one-step coelectrodeposition and electrochemical etching method,” J. Phys. Chem. B 109 (2005) 23326-23329.
[94] H. Cao, L. Wang, Y. Qiu, Q. Wu, G. Wang, L. Zhang, and X. Liu. “Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays,” Chem. Phys. Chem. 7 (2006) 1500-4.
[95] G. Song, X. She, Z. Fu, and J. Li. “Preparation of good mechanical property polystyrene nanotubes with array structure in anodic aluminum oxide template using simple physical techniques,” J. Mater. Res. 19 (2004) 3324-3328.
[96] F. Tao, M. Guan, Y. Jiang, J. Zhu, Z. Xu, and Z. Xue. “An easy way to construct an ordered array of nickel nanotubes: the triblock-copolymer-assisted hard-template method,” Adv. Mater. 18 (2006) 2161-2164.
[97] R. H. Fowler and L. Nordheim. “Electron emission in intense electric fields,” R. Soc. London. A11 (1928) 173-181.
[98] V. M. Aguero and R. C. Adamo. “Space applications of spindt cathode field emission arrays,” Spacecraft Charging Technology Conference. 6 (2000) 347-352.
[99] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim. “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett. 75 (1999) 3129-3131.
[100] B. R. Huang, C. S. Yeh, D. C. Wang, J. T. Tan, and J. Sung. “Field emission studies of amorphous carbon deposited on copper nanowires grown by cathodic arc plasma deposition,” New Carbon Mater. 24 (2009) 97-101.
[101] J. Zhou, N. S. Xu, S. Z. Deng, J. Chen, J. C. She, and Z. L. Wang. “Large-area nanowire arrays of Molybdenum and Molybdenum oxides: synthesis and field emission properties,” Adv. Mater. 15 (2003) 1835-1840.
[102] L. Vila, P. Vincent, L. D. D. Pra, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, and P. Legagneux. “Growth and Field-Emission Properties of Vertically Aligned Cobalt Nanowire Arrays,” Nano Lett. 4 (2004) 521-524.
[103] A. Dangwal, C. S. Pandey, G. Müller, S. Karim, T. W. Cornelius, and C. Trautmann. “Field emission properties of electrochemically deposited gold nanowires,” Appl. Phys. Lett. 92 (2008).
[104] I. Chakraborty and P. Ayyub. “Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics,” Nanotechnology. 23 (2012) 015704.
[105] A. Apte, P. Joshi, P. Bhaskar, D. Joag, and S. Kulkarni. “Vertically aligned self-assembled gold nanorods as low turn-on, stable field emitters,” Appl. Surf. Sci. 355 (2015) 978-983.
[106] J.-H. Wang, T.-H. Yang, W.-W. Wu, L.-J. Chen, C.-H. Chen, and C.-J. Chu. “Synthesis and growth mechanism of pentagonal Cu nanobats with field emission characteristics,” Nanotechnology. 17 (2006) 719-722.
[107] I. C. Chang, T. K. Huang, H. K. Lin, Y. F. Tzeng, C. W. Peng, F. M. Pan, C. Y. Lee, and H. T. Chiu. “Growth of pagoda-topped tetragonal copper nanopillar arrays,” ACS Appl. Mater. Interfaces. 1 (2009) 1375-8.
[108] G. S. Sekhon, S. Kumar, C. Kaur, N. K. Verma, C.-H. Lu, and S. K. Chakarvarti. “An efficient novel low voltage field electron emitter with cathode consisting of template synthesized copper microarrays,” J. Mater. Sci. - Mater. Electron. 22 (2011) 1725-1729.
[109] R. Gupta, R. P. Chauhan, S. K. Chakarvarti, M. K. Jaiswal, D. Ghoshal, S. Basu, S. Suresh, S. F. Bartolucci, N. Koratkar, and R. Kumar. “Enhanced field emission from copper nanowires synthesized using ion track-etch membranes as scaffolds,” J. Mater. Sci. - Mater. Electron. 29 (2018) 19013-19027.
|