參考文獻 |
[1] G. Wang, Z. Li, M. Li, J. Liao, C. Chen, S. Lv, and C. Shi, “Enhanced field-emission of silver nanoparticle-graphene oxide decorated ZnO nanowire arrays,” Phys. Chem. Chem. Phys. 17 (2015) 31822-31829.
[2] H. C. Chang, H. J. Tsai, W. Y. Lin, Y. C. Chu, and W. K. Hsu, “Hexagonal boron nitride coated carbon nanotubes: interlayer polarization improved field emission,” ACS Appl. Mater. Interfaces 7 (2015) 14456-14462.
[3] C. Clavero, “Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices,” Nat. Photonics 8 (2014) 95-103.
[4] X. Zhang, Y. Liu, S.-T. Lee, S. Yang, and Z. Kang, “Coupling surface plasmon resonance of gold nanoparticles with slow-photon-effect of TiO2 photonic crystals for synergistically enhanced photoelectrochemical water splitting,” Energy Environ. Sci. 7 (2014) 1409.
[5] M. Grajower, U. Levy, and J. B. Khurgin, “The role of surface roughness in plasmonically assisted internal photoemission schottky photodetectors,” ACS Photonics 5 (2018) 4030-4036.
[6] B. D. Boruah, S. N. Majji, and A. Misra, “Surface photo-charge effect in doped-ZnO nanorods for high-performance self-powered ultraviolet photodetectors,” Nanoscale 9 (2017) 4536-4543.
[7] P. S. Shewale and Y. S. Yu, “Structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods: Effect of growth time,” J. Alloys Compd. 654 (2016) 79-86.
[8] R. Dewan, S. Shrestha, V. Jovanov, J. Hüpkes, K. Bittkau, and D. Knipp, “Random versus periodic: Determining light trapping of randomly textured thin film solar cells by the superposition of periodic surface textures,” Sol. Energy Mater Sol. Cells 143 (2015) 183-189.
[9] F. Zhuge, Z. Zheng, P. Luo, L. Lv, Y. Huang, H. Li, and T. Zhai, “Nanostructured materials and architectures for advanced infrared photodetection,” Adv. Mater. Technol. 2 (2017) 1700005.
[10] P. R. A. Binetti, X. J. M. Leijtens, T. de Vries, Y. S. Oei, L. Di Cioccio, J. M. Fedeli, C. Lagahe, J. Van Campenhout, D. Van Thourhout, P. J. van Veldhoven, R. Nötzel, and M. K. Smit, “InP/InGaAs photodetector on SOI photonic circuitry,” IEEE Photon. J. 2 (2010) 299-305.
[11] A. M. Itsuno, J. D. Phillips, and S. Velicu, “Mid-wave infrared HgCdTe nBn photodetector,” Appl. Phys. Lett. 100 (2012) 161102.
[12] I. Kimukin, N. Biyikli, T. Kartaloglu, O. Aytur, and E. Ozbay, “High-speed InSb photodetectors on GaAs for Mid-IR applications,” IEEE J. Sel. Top. Quantum Electron. 10 (2004) 766-770.
[13] J. Werner, M. Oehme, M. Schmid, M. Kaschel, A. Schirmer, E. Kasper, and J. Schulze, “Germanium-tin p-i-n photodetectors integrated on silicon grown by molecular beam epitaxy,” Appl. Phys. Lett. 98 (2011) 061108.
[14] J. W. Zeller, H. Efstathiadis, G. Bhowmik, P. Haldar, N. K. Dhar, J. Lewis, P. Wijewarnasuriya, Y. R. Puri, and A. K. Sood, “Development of Ge PIN photodetectors on 300 mm Si wafers for near-infrared sensing,” Int. J. Engr. Res. Tech. 8 (2015) 23-33.
[15] B. Das, N. S. Das, S. Sarkar, B. K. Chatterjee, and K. K. Chattopadhyay, “Topological insulator Bi2Se3/Si-nanowire-based p-n junction diode for high-performance near-infrared photodetector,” ACS Appl. Mater. Interfaces 9 (2017) 22788-22798.
[16] A. V. Shevlyagin, D. L. Goroshko, E. A. Chusovitin, K. N. Galkin, N. G. Galkin, and A. K. Gutakovskii, “Enhancement of the Si p-n diode NIR photoresponse by embedding beta-FeSi2 nanocrystallites,” Sci. Rep. 5 (2015) 14795.
[17] I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett. 11 (2011) 2219-2224.
[18] B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, “Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime,” Optica 2 (2015) 335.
[19] Z. Qi, Y. Zhai, L. Wen, Q. Wang, Q. Chen, S. Iqbal, G. Chen, J. Xu, and Y. Tu, “Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection,” Nanotechnology 28 (2017) 275202.
[20] S. Li, Z. Pei, F. Zhou, Y. Liu, H. Hu, S. Ji, and C. Ye, “Flexible Si/PEDOT:PSS hybrid solar cells,” Nano Res. 8 (2015) 3141-3149.
[21] E. Mottay, X. Liu, H. Zhang, E. Mazur, R. Sanatinia, and W. Pfleging, “Industrial applications of ultrafast laser processing,” MRS Bulletin 41 (2016) 984-992.
[22] Y. Su, X. Zhan, H. Zang, Y. Fu, A. Li, H. Xu, S.-L. Chin, and P. Polynkin, “Direct and stand-off fabrication of black silicon with enhanced absorbance in the short-wavelength infrared region using femtosecond laser filament,” Appl. Phys. B 124 (2018) 223.
[23] H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “Growth of amorphous silicon nanowires via a solid–liquid–solid mechanism,” Chem. Phys. Lett. 323 (2000) 224-228.
[24] D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E 9 (2001) 305-309.
[25] Y. Wang, K. Lew, T. Ho, L. Pan, S. Novak, E. Dickey, J. Redwing, and T. Mayer, “Use of phosphine as an n-type dopant source for vapor−liquid−solid growth of silicon nanowires,” Nano Lett. 5 (2005) 2139-2143.
[26] K. K. Lew and J. M. Redwing, “Growth characteristics of silicon nanowires synthesized by vapor–liquid–solid growth in nanoporous alumina templates,” J. Cryst. Growth 254 (2003) 14-22.
[27] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-assisted growth of semiconducting nanowires,” Adv. Mater. 15 (2003) 635-640.
[28] Y. Yao, F. Li, and S.-T. Lee, “Oriented silicon nanowires on silicon substrates from oxide-assisted growth and gold catalysts,” Chem. Phys. Lett. 406 (2005) 381-385.
[29] H.-C. Chang, K.-Y. Lai, Y.-A. Dai, H.-H. Wang, C.-A. Lin, and J.-H. He, “Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency,” Energy Environ. Sci. 4 (2011) 2863.
[30] L. A. Osminkina, K. A. Gonchar, V. S. Marshov, K. V. Bunkov, D. V. Petrov, L. A. Golovan, F. Talkenberg, V. A. Sivakov, and V. Y. Timoshenko, “Optical properties of silicon nanowire arrays formed by metal-assisted chemical etching: evidences for light localization effect,” Nanoscale Res. Lett. 7 (2012) 524.
[31] H. A. A. OIDE, S. ONO, “Fabrication of ordered nanostructure on silicon substrate using localized anodization and chemical etching,” Electrochemistry 74 (2006) 379-384.
[32] P. Yu, J. Wu, S. Liu, J. Xiong, C. Jagadish, and Z. M. Wang, “Design and fabrication of silicon nanowires towards efficient solar cells,” Nano Today 11 (2016) 704-737.
[33] H. Lin, H.-Y. Cheung, F. Xiu, F. Wang, S. Yip, N. Han, T. Hung, J. Zhou, J. C. Ho, and C.-Y. Wong, “Developing controllable anisotropic wet etching to achieve silicon nanorods, nanopencils and nanocones for efficient photon trapping,” J. Mater. Chem. A 1 (2013) 9942.
[34] Q. Yang, X. A. Zhang, A. Bagal, W. Guo, and C. H. Chang, “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference,” Nanotechnology 24 (2013) 235202.
[35] P. Campbell and M. A. Green, “Light trapping properties of pyramidally textured surfaces,” J. Appl. Phys. 62 (1987) 243-249.
[36] D. Zhiqiang, L. Meicheng, and T. M. Chonto, “Effective light absorption using the double-sided pyramid gratings for thin-film silicon solar cell,” Nanoscale Res. Lett. 13 (2018) 192.
[37] W.-C. Hsu, J. K. Tong, M. S. Branham, Y. Huang, S. Yerci, S. V. Boriskina, and G. Chen, “Mismatched front and back gratings for optimum light trapping in ultra-thin crystalline silicon solar cells,” Opt. Commun. 377 (2016) 52-58.
[38] K. X. Wang, Z. Yu, V. Liu, Y. Cui, and S. Fan, “Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings,” Nano Lett. 12 (2012) 1616-1619.
[39] I. Karakasoglu, K. X. Wang, and S. Fan, “Optical-electronic analysis of the intrinsic behaviors of nanostructured ultrathin crystalline silicon solar cells,” ACS Photonics 2 (2015) 883-889.
[40] W. Liu, S. Zhang, Y. Liu, X. Wang, and F. Yang, “Double sided nanopyramid arrays for broad spectrum absorption enhancement in ultrathin-film solar cells ” IEEE (2016) 2946–2948.
[41] Y. Huang, W. Wang, W. Pan, W. Chen, Z. Wang, X. Tan, and W. Yan, “Comparative investigation on designs of light absorption enhancement of ultrathin crystalline silicon for photovoltaic applications,” J. Photonics Energy 6 (2016) 047001.
[42] E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72 (1982) 899.
[43] H.-C. Chang, C.-J. Huang, P.-T. Hsieh, W.-C. Mo, S.-H. Yu, and C.-C. Li, “Improvement on industrial n-type bifacial solar cell with >20.6% efficiency,” Energy Procedia 55 (2014) 643-648.
[44] F. Wang, S. Zhao, B. Liu, Y. Li, Q. Ren, R. Du, N. Wang, C. Wei, X. Chen, G. Wang, B. Yan, Y. Zhao, and X. Zhang, “Silicon solar cells with bifacial metal oxides carrier selective layers,” Nano Energy 39 (2017) 437-443.
[45] N. Zin, K. McIntosh, S. Bakhshi, A. Vázquez-Guardado, T. Kho, K. Fong, M. Stocks, E. Franklin, and A. Blakers, “Polyimide for silicon solar cells with double-sided textured pyramids,” Sol. Energy Mater Sol. Cells 183 (2018) 200-204.
[46] N. P. Dasgupta, S. Xu, H. J. Jung, A. Iancu, R. Fasching, R. Sinclair, and F. B. Prinz, “Nickel silicide nanowire arrays for anti-reflective electrodes in photovoltaics,” Adv. Funct. Mater. 22 (2012) 3650-3657.
[47] Z. Liu, H. Zhang, L. Wang, and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil,” Nanotechnology 19 (2008) 375602.
[48] H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of high-density titanium silicide nanowires in a single direction on a silicon surface,” Nano Lett. 7 (2007) 885-889.
[49] S. Y. Chen and L. J. Chen, “Self-assembled epitaxial NiSi2 nanowires on Si(001) by reactive deposition epitaxy,” Thin Solid Films 508 (2006) 222-225.
[50] Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430 (2004) 61-65.
[51] C.-Y. Liu, W.-S. Li, L.-W. Chu, M.-Y. Lu, C.-J. Tsai, and L.-J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology 22 (2011) 055603.
[52] S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee, Y.-W. Kim, H. Kim, and T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Trans. Nanotechnol. 12 (2013) 704-711.
[53] C. Chuang and S. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Res. 7 (2014) 1592-1603.
[54] S. Libertino, S. Coffa, J. L. Benton, K. Halliburton, and D. J. Eaglesham, “Formation, evolution and annihilation of interstitial clusters in ion implanted Si,” Nucl. Instrum. Methods Phys. Res 148 (1999) 247-251.
[55] M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives,” Sensors 10 (2010) 10571-10600.
[56] M. Casalino, G. Coppola, R. M. De La Rue, and D. F. Logan, “State-of-the-art all-silicon sub-bandgap photodetectors at telecom and datacom wavelengths,” Laser Photonics Rev. 10 (2016) 895-921.
[57] H. Y. Fan and A. K. Ramdas, “Infrared absorption and photoconductivity in irradiated silicon,” J. Appl. Phys. 30 (1959) 1127-1134.
[58] H. J. Stein, F. L. Vook, and J. A. Borders, “Direct evidence of divacancy formation in silicon by ion implantation,” Appl. Phys. Lett. 14 (1969) 328-330.
[59] G.-M. M., “Über Elementarakte mit zwei Quantensprüngen,” Ann. Phys. 9 (1931) 273–295.
[60] M. Casalino, “Near-infrared sub-bandgap all-silicon photodetectors: a review,” Int. J. Opt. Appl. 2 (2012) 1-16.
[61] J. F. Reintjes and J. C. McGroddy, “Indirect two-photon transitions in Si at 1.06 μm,” Phys. Rev. Lett. 30 (1973) 901-903.
[62] E. V. Stryland, H. Vanherzeele, M. Woodall, M. Soileau, A. Smirl, S. Guha, and T. Boggess, “Two photon absorption, nonlinear refraction, and optical limiting in semiconductors,” Opt. Eng. 24 (1985) 613-623.
[63] H. K. Tsang, C. S. Wong, T. K. Liang, I. E. Day, S. W. Roberts, A. Harpin, J. Drake, and M. Asghari, “Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength,” Appl. Phys. Lett. 80 (2002) 416-418.
[64] A. Cowan, G. Rieger, and J. Young, “Nonlinear transmission of 1.5 µm pulses through single-mode silicon-on-insulator waveguide structures,” Opt. Express 12 (2004) 1611.
[65] A. D. Bristow, N. Rotenberg, and H. M. van Driel, “Two-photon absorption and Kerr coefficients of silicon for 850–2200nm,” Appl. Phys. Lett. 90 (2007) 191104.
[66] R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev. 38 (1931) 45-56.
[67] M. Casalino, “Internal photoemission theory: comments and theoretical limitations on the performance of near-infrared silicon schottky photodetectors,” IEEE J. Quantum Electron 52 (2016) 1-10.
[68] J. Cohen, J. Vilms, and R. J. Archer, “Investigation of semiconductor Schottky barriers for optical detection and cathodic emission,” Air Force Cambridge Research Labs (1968).
[69] C. Scales and P. Berini, “Thin-film Schottky barrier photodetector models,” IEEE J. Quantum Electron 46 (2010) 633-643.
[70] V. Vickers, “Model of Schottky barrier hot-electron-mode photodetection,” Appl. Opt. 10 (1971) 2190.
[71] A. Di Bartolomeo, “Graphene schottky diodes: An experimental review of the rectifying graphene/semiconductor heterojunction,” Phys. Rep 606 (2016) 1-58.
[72] W. Schottky, “Halbleitertheorie der Sperrschicht,” Sci. Nat. 26 (1938) 843.
[73] N. F. Mott, “Note on the contact between a metal and an insulator or semi-conductor,” Math. Proc. Camb. Philos. Soc. 34 (1938) 568-572.
[74] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev. 71 (1947) 717-727.
[75] A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal‐semiconductor systems,” J. Appl. Phys. 36 (1965) 3212-3220.
[76] C. Chen, B. Nechay, and B. Tsaur, “Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode,” IEEE Trans. Electron Devices 38 (1991) 1094-1103.
[77] B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol 43 (2002) 85-90.
[78] H. Elabd, T. Villani, and W. Ko, “Palladium-silicide Schottky-barrier IR-CCD for SWIR applications at intermediate temperatures,” IEEE Electron Device Lett. 3 (1982) 89-90.
[79] R. McKee, “Enhanced quantum efficiency of Pd2Si Schottky infrared diodes on〈111〉Si,” IEEE Trans. Electron Devices 31 (1984) 968-970.
[80] B. Tsaur, M. Weeks, R. Trubiano, P. Pellegrini, and T. Yew, “IrSi Schottky-barrier infrared detectors with 10-μm cutoff wavelength,” IEEE Electron Device Lett. 9 (1988) 650-653.
[81] B. Tsaur, C. Chen, and B. Nechay, “IrSi Schottky-barrier infrared detectors with wavelength response beyond 12 μm,” IEEE Electron Device Lett. 11 (1990) 415-417.
[82] S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett. 92 (2008) 081103.
[83] S. Zhu, G. Q. Lo, M. B. Yu, and D. L. Kwong, “Low-cost and high-gain silicide Schottky-barrier collector phototransistor integrated on Si waveguide for infrared detection,” Appl. Phys. Lett. 93 (2008) 071108.
[84] S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett. 20 (2008) 1396-1398.
[85] X. Qiu, X. Yu, S. Yuan, Y. Gao, X. Liu, Y. Xu, and D. Yang, “Trap assisted bulk silicon photodetector with high photoconductive gain, low noise, and fast response by Ag hyperdoping,” Adv. Opt. Mater. 6 (2018) 1700638.
[86] M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, and N. J. Halas, “Combining plasmonic hot carrier generation with free carrier absorption for high-performance near-infrared silicon-based photodetection,” ACS Photonics 5 (2018) 3472-3477.
[87] Z. Yang, K. Du, H. Wang, F. Lu, Y. Pang, J. Wang, X. Gan, W. Zhang, T. Mei, and S. J. Chua, “Near-infrared photodetection with plasmon-induced hot electrons using silicon nanopillar array structure,” Nanotechnology 30 (2019) 075204.
[88] J. Duran and A. Sarangan, “Schottky-barrier photodiode internal quantum efficiency dependence on nickel silicide film thickness,” IEEE Photon. J. 11 (2019) 1-15.
[89] B. P. Azeredo, J. Sadhu, J. Ma, K. Jacobs, J. Kim, K. Lee, J. H. Eraker, X. Li, S. Sinha, N. Fang, P. Ferreira, and K. Hsu, “Silicon nanowires with controlled sidewall profile and roughness fabricated by thin-film dewetting and metal-assisted chemical etching,” Nanotechnology 24 (2013) 225305.
[90] F. Teng, N. Li, D. Xu, D. Xiao, X. Yang, and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching,” Nanoscale 9 (2017) 449-453.
[91] Y. Xu, Y. Xuan, and X. Liu, “Design of nano/micro–structured surfaces for efficiently harvesting and managing full–spectrum solar energy,” Solar Energy 158 (2017) 504-510.
[92] A. Cassie and S. Baxter, “Wettability of porous surfaces,” J. Chem. Soc. Faraday Trans 40 (1994) 546.
[93] R. Wenzel, “Resistance of solid surfaces to wetting by water,” Ind. Eng. Chem. Res. 28 (1936) 988-994.
[94] J. W. Cleary, R. E. Peale, D. J. Shelton, G. D. Boreman, C. W. Smith, M. Ishigami, R. Soref, A. Drehman, and W. R. Buchwald, “IR permittivities for silicides and doped silicon,” J. Opt. Soc. Am. B 27 (2010) 730-734.
[95] J. Cleary, R. Peale, D. Shelton, G. Boreman, R. S. , and W. Buchwald, “Silicides for infrared surface plasmon resonance biosensors,” MRS Proceedings 1133 (2008).
[96] H. Norde, “A modified forward I‐V plot for Schottky diodes with high series resistance,” J. Appl. Phys. 50 (1979) 5052-5053.
[97] S. Gholami and M. Khakbaz, “Measurement of I-V characteristics of a PtSi/p-Si Schottky barrier diode at low temperatures,” Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 5 (2011) 128.
[98] Y. Cao, J. Zhu, J. Xu, J. He, J. L. Sun, Y. Wang, and Z. Zhao, “Ultra-broadband photodetector for the visible to terahertz range by self-assembling reduced graphene oxide-silicon nanowire array heterojunctions,” Small 10 (2014) 2345-2351.
[99] P.-L. Ong, W. B. Euler, and I. A. Levitsky, “Carbon nanotube-Si diode as a detector of mid-infrared illumination,” Appl. Phys. Lett. 96 (2010) 033106.
[100] F. Cao, Q. Liao, K. Deng, L. Chen, L. Li, and Y. Zhang, “Novel perovskite/TiO2/Si trilayer heterojunctions for high-performance self-powered ultraviolet-visible-near infrared (UV-Vis-NIR) photodetectors,” Nano Res. 11 (2018) 1722-1730.
[101] M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett. 96 (2010) 241112.
[102] S. Li, N. G. Tarr, W. Ye, and P. Berini, “Pd Schottky barrier photodetector integrated with LOCOS-defined SOI waveguides,” IEEE (2015).
[103] M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-infrared all-silicon photodetectors,” Int. J. Photoenergy 2012 (2012) 1-6.
[104] M. Gioffre, G. Coppola, M. Iodice, and M. Casalino, “Integrable near-infrared photodetectors based on hybrid erbium/silicon junctions,” Sensors 18 (2018) 3755.
[105] F. Hu, X. Y. Dai, Z. Q. Zhou, X. Y. Kong, S. L. Sun, R. J. Zhang, S. Y. Wang, M. Lu, and J. Sun, “Black silicon Schottky photodetector in sub-bandgap near-infrared regime,” Opt. Express 27 (2019) 3161-3168.
[106] S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett. 100 (2012) 061109.
[107] S. Roy, K. Midya, S. P. Duttagupta, and D. Ramakrishnan, “Nano-scale NiSi and n-type silicon based Schottky barrier diode as a near infra-red detector for room temperature operation,” J. Appl. Phys. 116 (2014) 124507.
[108] Y. T. Wu, C. W. Huang, C. H. Chiu, C. F. Chang, J. Y. Chen, T. Y. Lin, Y. T. Huang, K. C. Lu, P. H. Yeh, and W. W. Wu, “Nickel/platinum dual silicide axial nanowire heterostructures with excellent photosensor applications,” Nano Lett. 16 (2016) 1086-1091. |