博碩士論文 106324064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.144.227.3
姓名 林柏辰(Bo-Chen Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 可用於表面增強拉曼散射之銀奈米結構粒子於嵌段高分子模板
(BCP-Templated Silver Nanostructured Particles for Surface Enhanced Raman Scattering)
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在這項研究中,我們開發了一個三維模板,通過雙團鏈共聚高分子自組裝的BCP奈米結構,進行表面重建以獲得多孔高分子薄膜。,進一步用於製造銀奈米結構之模板。三維多孔模板用晶種成長法成長銀晶種後使用氯化亞錫致敏,亞錫離子吸附至模板表面上,通過銀鏡反應生長具有高密度的銀奈米結構顆粒。三維銀奈米結構可用於表面增強拉曼光譜(SERS)的優異基材,用於物理吸附羅丹明6G的分子傳感測。在模板表面上存在豐富的銀奈米顆粒在通過電磁機制促進在拉曼增強中起關鍵作用。基於自組裝雙團鏈共聚高分子奈米構造的銀模板為製造SERS基材提供了新的設計策略。
摘要(英) In this study a three-dimensional template was generated through surface–reconstruction of self-assembled PS-b-P4VP nanodomains for fabricating nanostructured silver particles. The three-dimensional porous template was sensitized with stannous chloride, by which silver tiny seeds were first nucleated onto the surface of the nanodomains. Silver nanostructured particles with a high number density were grown by silver mirror reactions. The three-dimensional silver nanostructures can be used as an excellent substrate for surface-enhanced Raman spectroscopy (SERS), coupled with fluorescence quenching, which allows for molecular sensing of physically adsorbed Rhodamine 6G. The presence of abundant silver nanoparticles on the surface of the template plays a critical role in promoting a large Raman enhancement via an electromagnetic mechanism. The silver template based on the construction of self-assembled BCP nanodomains provides a new design strategy for fabricating SERS substrates.
關鍵字(中) ★ 嵌段共聚物
★ 表面增強拉曼散射
★ 銀奈米粒子
關鍵字(英) ★ Block copolymer
★ Surface-enhanced Raman scattering
★ Silver nanoparticles
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
Chapter1 序論 1
1.1 序論 1
1.2 嵌段共聚物之自組裝行為 3
1.3 表面重建(Surface reconstruction) 7
1.4 無電鍍原理 11
1.4.1 無電鍍液組成及特性 12
1.4.2 無電鍍之前處理 13
1.5 拉曼光譜學 14
1.6 表面拉曼光譜訊號增強原理 17
1.6.1 化學增強型基材 18
1.6.2 電磁場增強型基材 21
Chapter2 實驗 25
2.1 高分子材料 25
2.2 溶劑藥品與基材 26
2.3 實驗儀器 27
2.4 試片製備與實驗步驟 28
2.4.1 矽晶基材(SiOx/Si)基材清洗 28
2.4.2 P(S-b-4VP)孔洞薄膜的製備 28
2.4.3 鑲嵌銀奈米粒子之基材的製備 29
2.5 儀器分析 30
2.5.1 原子力顯微鏡 30
2.5.2 掃描式電子顯微鏡 32
2.5.3 穿透式電子顯微鏡 33
2.5.4 拉曼光譜儀 34
2.5.5 X光繞射分析 35
2.5.6 紫外光可見光光分光譜儀 36
Chapter3 結果與討論 37
3.1 鑲嵌銀奈米在高分子孔洞模板 37
3.1.1 晶種成長法對於銀奈米結構的影響 37
3.2 敏化處理對於銀奈米結構的影響 42
3.2.1 使用氯化亞錫水溶液進行敏化處理 43
3.2.2 比較不同PH值的敏化液對銀奈米結構的影響 46
3.3 鑲嵌銀奈米孔洞模板上拉曼增強訊號上的效果 49
3.4 燒結銀奈米粒子製備銀連續結構 54
3.4.1 使用熱燒結銀奈米結構 54
3.4.2 電解質溶液燒結銀奈米粒子 55
3.4.3 氧氣電漿燒結銀奈米粒子 56
3.4.4 氧氣電漿燒結銀奈米粒子 61
Chapter4 結論 63
參考資料 65
附錄 72
參考文獻 1. Piner, R.D., Zhu, J., Xu, F., Hong, S., and Mirkin, C.A., " Dip-pen" nanolithography. science, 1999. 283(5402): p. 661-663.
2. Chen, Z., He, C., Li, F., Tong, L., Liao, X., and Wang, Y., Responsive micellar films of amphiphilic block copolymer micelles: control on micelle opening and closing. Langmuir, 2010. 26(11): p. 8869-74.
3. Wang, Y., Tong, L., and Steinhart, M., Swelling-Induced Morphology Reconstruction in Block Copolymer Nanorods: Kinetics and Impact of Surface Tension During Solvent Evaporation. ACS Nano, 2011. 5(3): p. 1928-1938.
4. 林建甫, 富含氮奈米碳材製備與拉曼光譜增強基之應用. 碩士論文, 2016.
5. 張智堯, 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究. 碩士論文, 2011.
6. 劉峻佑, Tailoring Nanostructures of Dibolck Copolymer by Photochemistry and Its Applications in Spartial Control of Ag and Ag@Au Nanoparticles. 博士論文, 2015.
7. Sun, Y.S., Lin, C.F., Luo, S.T., and Su, C.Y., Block-Copolymer-Templated Hierarchical Porous Carbon Nanostructures with Nitrogen-Rich Functional Groups for Molecular Sensing. ACS Appl Mater Interfaces, 2017. 9(37): p. 31235-31244.
8. Bates, F.S. and Fredrickson, G.H., Block copolymers-designer soft materials. Physics Today, 2000.
9. Chavis Michelle, A., M., S.D., Wiesner Ulrich, B., and Ober Christopher, K., Widely Tunable Morphologies in Block Copolymer Thin Films Through Solvent Vapor Annealing Using Mixtures of Selective Solvents. Advanced Functional Materials, 2015. 25(20): p. 3057-3065.
10. Tavakkoli, K., Hannon, A.F., Gotrik, K.W., Alexander‐Katz, A., Ross, C.A., and Berggren, K.K., Rectangular symmetry morphologies in a topographically templated block copolymer. Advanced Materials, 2012. 24(31): p. 4249-4254.
11. Sinturel, C., Vayer, M.n., Morris, M., and Hillmyer, M.A., Solvent vapor annealing of block polymer thin films. Macromolecules, 2013. 46(14): p. 5399-5415.
12. Bates, F.S. and Fredrickson, G.H., Block copolymer thermodynamics: theory and experiment. Annual Review of Physical Chemistry, 1990. 41(1): p. 525-557.
13. Tseng, Y.C. and Darling, S.B., Block Copolymer Nanostructures for Technology. Polymers, 2010. 2(4): p. 470-489.


14. Mansky, P., Russell, T.P., Hawker, C.J., Pitsikalis, M., and Mays, J., Ordered Diblock Copolymer Films on Random Copolymer Brushes. Macromolecules, 1997. 30(22): p. 6810-6813.
15. Mansky, P., Russell, T.P., Hawker, C.J., Mays, J., Cook, D.C., and Satija, S.K., Interfacial segregation in disordered block copolymers: effect of tunable surface potentials. Physical Review Letters, 1997. 79(2): p. 237-240.
16. Sivaniah, E., Hayashi, Y., Iino, M., Hashimoto, T., and Fukunaga, K., Observation of perpendicular orientation in symmetric diblock copolymer thin films on rough substrates. Macromolecules, 2003. 36(16): p. 5894-5896.
17. Park, S., Lee, D.H., Xu, J., Kim, B., Hong, S.W., Jeong, U., Xu, T., and Russell, T.P., Macroscopic 10-terabit–per–square-inch arrays from block copolymers with lateral order. Science, 2009. 323(5917): p. 1030-1033.
18. Morkved, T.L. and Jaeger, H.M., Thickness-induced morphology changes in lamellar diblock copolymer ultrathin films. Europhysics Letters, 1997. 40(6): p. 643-648.
19. Knoll, A., Horvat, A., Lyakhova, K.S., Krausch, G., Sevink, G.J.A., Zvelindovsky, A.V., and Magerle, R., Phase behavior in thin films of cylinder-forming block copolymers. Physical Review Letters, 2002. 89(3): p. 035501(1-4).
20. Hamley, I.W., Ordering in thin films of block copolymers: Fundamentals to potential applications. Progress in Polymer Science, 2009. 34(11): p. 1161-1210.
21. Nicolai, T., Colombani, O., and Chassenieux, C., Dynamic polymeric micelles versus frozen nanoparticles formed by block copolymers. Soft Matter, 2010. 6(14): p. 3111-3118.
22. Loh, W., Block copolymer micelles. Encyclopedia of Surface and Colloid Science, 2006: p. 802-813.
23. Xu, T., Stevens, J., Villa, J.A., Goldbach, J.T., Guarini, K.W., Black, C.T., Hawker, C.J., and Russell, T.P., Block Copolymer Surface Reconstuction: A Reversible Route to Nanoporous Films. Advanced Functional Materials, 2003. 13(9): p. 698-702.
24. Wang, Y., Gösele, U., and Steinhart, M., Mesoporous Block Copolymer Nanorods by Swelling-Induced Morphology Reconstruction. Nano Letters, 2008. 8(10): p. 3548-3553.
25. Nunes, S.P., Behzad, A.R., Hooghan, B., Sougrat, R., Karunakaran, M., Pradeep, N., Vainio, U., and Peinemann, K.V., Switchable pH-Responsive Polymeric Membranes Prepared via Block Copolymer Micelle Assembly. ACS Nano, 2011. 5(5): p. 3516-3522.
26. Kim, M.P., Kim, H.J., Kim, B.J., and Yi, G.R., Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions. Nanotechnology, 2015. 26(9): p. 095302(1-7).
27. V. M. Dubin, “Electroless Ni-P Deposition on Silicon with Pd Activation”, J. Electrochem. Soc. 1992.139:p. 1289-1294.
28. R. L. Jackson, “Pd2+/Poly(acrylic acid) Thin Films as Catalysts for Electroless Copper Deposition: Mechanism of Catalyst Formation”, 1990.137: p. 95-101.
29. R. Touir, H. Larhzil, M. EbnTouhami, M. Cherkaoui, and E. Chassaing, “Electroless Deposition of Copper in Acidic Solutions Using Hypophosphite Reducing Agent”, J. Appl. Electrochem. 2006.36: p. 69-75.
30. I. Baskaran, R. Sakthi Kumar, T. S. N. Sankara Narayanan, and A. Stephen, “Formation of Electroless Ni–B Coatings Using Low Temperature Bath and Evaluation of Their Characteristic Properties”, Surf. Coat. Technol. 2006.200: p. 6888-6894.
31. S. Haag, M. Burgard, and B. Ernst, “Pure Nickel Coating on a Mesoporous Alumina Membrane: Preparation by Electroless Plating and Characterization”, Surf. Coat. Technol. 2006.201: p. 2166-2173.


32. S. Y. Chang, C. W. Lin, H. H. Hsu, J. H. Fang, and S. J. Lin, “Integrated Electrochemical Deposition of Copper Metallization for Ultralarge-Scale Integrated Circuits”, J. Electrochem. Soc.2004. 151: p. C81-C88.
33. A. Vaskelis, R. Juskenas, and J. Jaciauskiene, “Copper Hydride Formation in the Electroless Copper Plating Process: in Situ X-ray Diffraction Evidence and Electrochemical Study”, Electrochim. Acta1998.43:p. 1061-1066.
34. C. M. Liu, W. L. Liu, S. H. Hsieh, T. K. Tsai, and W. J. Chen, “Interfacial Reactions of Electroless Nickel Thin Films on Silicon”, Appl. Surf. Sci. 2005.243 :p. 259-264.
35. Gardiner, D., Graves, R., Practical Raman Spectroscopy. Springer-Verlag, 1989.
36. Butler, H.J., Ashton, L., Bird, B., Cinque, G., Curtis, K., Dorney, J., Esmonde-White, K., Fullwood, N.J., Gardner, B., Martin-Hirsch, P.L., Walsh, M.J., McAinsh, M.R., Stone, N., and Martin, F.L., Using Raman spectroscopy to characterize biological materials. Nature Protocols, 2016. 11: p. 664-687.
37. Fleischmann, M., Hendra, P.J., and McQuillan, A.J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters, 1974. 26(2): p. 163-166.
38. Chen, C., Davoli, I., Ritchie, G., and Burstein, E., Giant Raman scattering and luminescence by molecules adsorbed on Ag and Au metal island films. Surface Science, 1980. 101(1-3): p. 363-366.
39. Moskovits, M. and Suh, J.S., The geometry of several molecular ions adsorbed on the surface of colloidal silver. The Journal of Physical Chemistry, 1984. 88(7): p. 1293-1298.
40. Tsang, J.C., Kirtley, J.R., and Bradley, J.A., Surface-Enhanced Raman Spectroscopy and Surface Plasmons. Physical Review Letters, 1979. 43(11): p. 772-775.
41. Dornhaus, R., Benner, R.E., Chang, R.K., and Chabay, I., Surface plasmon contribution to SERS. Surface Science, 1980. 101(1-3): p. 367-373.
42. Suh, J.S., DiLella, D.P., and Moskovits, M., Surface-enhanced Raman spectroscopy of colloidal metal systems: a two-dimensional phase equilibrium in p-aminobenzoic acid adsorbed on silver. The Journal of Physical Chemistry, 1983. 87(9): p. 1540-1544.
43. Miller, S.K., Baiker, A., Meier, M., and Wokaun, A., Surface-enhanced Raman scattering and the preparation of copper substrates for catalytic studies. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 1984. 80(5): p. 1305-1312.
44. Ladouceur, H.D., Tevault, D.E., and Smardzewski, R.R., Surface‐enhanced Raman scattering from vapor‐deposited copper, silver, and gold. Excitation profiles and temperature dependence. The Journal of Chemical Physics, 1983. 78(2): p. 980-985.
45. Weitz, D.A., Garoff, S., Gersten, J.I., and Nitzan, A., The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of Chemical Physics, 1983. 78(9): p. 5324-5338.
46. Creighton, J.A., Blatchford, C.G., and Albrecht, M.G., Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1979. 75: p. 790-798.
47. Moody, R.L., Vo-Dinh, T., and Fletcher, W.H., Investigation of experimental parameters for surface-enhanced Raman scattering (SERS) using silver-coated microsphere substrates. Applied Spectroscopy, 1987. 41(6): p. 966-970.
48. Gupta, S., Banaszak, A., Smith, T., and Dimakis, N., Molecular sensitivity of metal nanoparticles decorated graphene‐family nanomaterials as surface‐enhanced Raman scattering (SERS) platforms. Journal of Raman Spectroscopy, 2018. 49(3): p. 438-451.
49. Chang, T.W., Wang, X., Mahigir, A., Veronis, G., Liu, G.L., and Gartia, M.R., Marangoni Convection Assisted Single Molecule Detection with Nanojet Surface Enhanced Raman Spectroscopy. ACS Sensors, 2017. 2(8): p. 1133-1138.
50. Campion, A. and Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews, 1998. 27(4): p. 241-250.
51. Guthmuller, J. and Champagne, B., Resonance Raman scattering of rhodamine 6G as calculated by time-dependent density functional theory: vibronic and solvent effects. The Journal of Physical Chemistry A, 2008. 112(14): p. 3215-3223.
52. Jensen, L. and Schatz, G.C., Resonance Raman scattering of rhodamine 6G as calculated using time-dependent density functional theory. The Journal of Physical Chemistry A, 2006. 110(18): p. 5973-5977.
53. Lombardi, J.R. and Birke, R.L., A Unified View of Surface-Enhanced Raman Scattering. Accounts of Chemical Research, 2009. 42(6): p. 734-742.
54. Yilmaz, M., Babur, E., Ozdemir, M., Gieseking, R.L., Dede, Y., Tamer, U., Schatz, G.C., Facchetti, A., Usta, H., and Demirel, G., Nanostructured organic semiconductor films for molecular detection with surface-enhanced Raman spectroscopy. Nature Materials, 2017. 16: p. 918-924.
55. Yu, X.X., Cai, H.B., Zhang, W.H., Li, X.J., Pan, N., Luo, Y., Wang, X.P., and Hou, J.G., Tuning chemical enhancement of SERS by controlling the chemical reduction of graphene oxide nanosheets. ACS Nano, 2011. 5(2): p. 952-958.
56. Gong, K., Du, F., Xia, Z., Durstock, M., and Dai, L., Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science, 2009. 323(5915): p. 760-764.
57. Ling, X., Fang, W., Lee, Y.H., Araujo, P.T., Zhang, X., Rodriguez-Nieva, J.F., Lin, Y., Zhang, J., Kong, J., and Dresselhaus, M.S., Raman enhancement effect on two-dimensional layered materials: graphene, h-BN and MoS2. Nano Letters, 2014.14(6): p. 3033-3040.
58. Peiris, S., McMurtrie, J., and Zhu, H.Y., Metal nanoparticle photocatalysts: emerging processes for green organic synthesis. Catalysis Science & Technology, 2016. 6(2): p. 320-338.
59. Goul, R., Das, S., Liu, Q., Xin, M., Lu, R., Hui, R., and Wu, J.Z., Quantitative analysis of surface enhanced Raman spectroscopy of Rhodamine 6G using a composite graphene and plasmonic Au nanoparticle substrate. Carbon, 2017. 111: p. 386-392.
60. Stamplecoskie, K.G., Scaiano, J.C., Tiwari, V.S., and Anis, H., Optimal Size of Silver Nanoparticles for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C, 2011. 115(5): p. 1403-1409.
61. Fan, W., Lee, Y.H., Pedireddy, S., Zhang, Q., Liu, T., and Ling, X.Y., Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing. Nanoscale, 2014. 6(9): p. 4843-4851.
62. Hsueh, H.Y., Chen, H.Y., Ling, Y.C., Huang, W.S., Hung, Y.C., Gwo, S., and Ho, R.M., A polymer-based SERS-active substrate with gyroid-structured gold multibranches. Journal of Materials Chemistry C, 2014. 2(23): p. 4667-4675.
63. Saleh, M.S., Hu, C., and Panat, R., Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Science Advances, 2017. 3(3): p. e1601986(1-8).
64. Cai, W.J., Wang, W.G., Yang, Y.I., Ren, G.H., and Chen, T., Sulfonated polystyrene spheres as template for fabricating hollow compact silver spheres via silver–mirror reaction at low temperature. RSC Adv., 2014. 4(5): p. 2295-2299.
65. 秦佳寬 , 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究 . 碩士論文 , 2018 .
66. Yin, J., Yao, X., Liou, J.Y., Sun, W., Sun, Y.S., and Wang, Y., Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers. ACS Nano, 2013. 7(11): p. 9961-9974.
67. Zhang, G., Tang, S., Li, A., and Zhu, L., Thermally stable metallic nanoparticles prepared via core-crosslinked block copolymer micellar nanoreactors. Langmuir, 2017 .33 (25) : p. 6353-6362.
68. Weia, X., and Roper, D.K., Tin Sensitization for Electroless Plating Review. The Electrochemical Society, 2014.161 (5) : p. D235-D242.
69. Kim, C., Baek, S., Ryu,Y., Kim, Y., Shin, K. Large-scale nanoporous metalcoated silica aerogels for high SERS efect improvement. Scientific REPOrTS, 2018 8: p. 15144.
70. Liu , Y., Deng , C., Yi , D., Wang , X.D., Tang, Y., and Wang, Y.J., Silica nanowire assemblies as three-dimensional, optically transparent platforms for constructing highly active SERS substrates. Nanoscale, 2017.9: p. 15901-15910.
71. Hsu, P.C., Kong, D., Wang, S.,Wang, H., Welch, A.J, Wu, H.,Cui, H., Electrolessly Deposited Electrospun Metal Nanowire Transparent Electrodes. 2014. 136 (30): p. 10593–10596.
72. Long, Y., Wu, J., Wang, H., Zhang, X., Zhao, N. and Xu, J., Rapid sintering of silver nanoparticles in an electrolyte solution at roomtemperature and its application to fabricate conductive silver films using polydopamine as adhesive layers. J. Mater. Chem, 2011. 21: p. 4875–4881.
73. Tang, Y., He,W., Wang, S., Tao, Z., and Cheng, L., New insight into the size-controlled synthesis of silver nanoparticles and its superiority in room temperature sintering. CrystEngComm, 2014.16: p.4431.
74. Maa, S., Bromberga, V., Egittob, F.D., Chiarota, P.R., Singlera,T.J., Low temperature plasma sintering of silver nanoparticles. Applied Surface Science 2014,293:p.207– 215.
75. Ma, C., Trujillo, M.J., and Camden,J.P., Nanoporous Silver Film Fabricated by Oxygen Plasma: A Facile Approach for SERS Substrates. ACS Appl. Mater. Interfaces, 2016. 8 : p. 23978−23984.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明