博碩士論文 106324056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:3.147.6.122
姓名 黃偉倫(Wei-Lun Huang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用膜過濾法從結腸癌組織中建立病患專一性細胞株
(Establishment of Patient-Specific Cancer Cell Lines from Colon Cancer Tissues by Membrane Filtration Method)
相關論文
★ 於不同彈性係數的生醫材料上體外培植造血幹細胞★ 藉由調整水凝膠之表面電荷及軟硬度並嫁接玻連蛋白用以培養人類多功能幹細胞
★ 可見光對羊水間葉幹細胞成骨分化之影響★ 可見光調控神經細胞之基因表現及突觸生長
★ 膜純化法及免疫抗體磁珠法用於分離及體外增殖血液幹細胞之研究★ 人類表皮成長因子的結構穩定性及生物活性測定
★ 微環境對羊水間葉幹細胞多功能性基因表現及分化之影響★ 奈米片段與細胞外基質之改質膜用於臍帶血中造血幹細胞之純化與培養
★ 小鼠脂肪幹細胞之膜純化法及細胞外間質對人類脂肪幹細胞影響之研究★ 利用具有奈米片段與細胞外間質蛋白質的表面改殖材質進行臍帶血造血幹細胞體外培養
★ 在不同培養條件下針對大腸癌細胞及組織中癌細胞進行純化、剔除及鑑定之研究★ 羊水間葉幹細胞培養於細胞外間質改質表面其分化能力及多能性之研究
★ 人類脂肪幹細胞的膜純化法與分化能力研究★ 具有抗藥性之大腸癌細胞株能提高癌胚抗原的表現,但並非是癌症起始細胞
★ 羊水間葉幹細胞培養於接枝細胞外間質寡肽與環狀肽具有最佳表面硬度的生醫材料,其增殖能力及多能性之研究★ 人類體細胞從組成誘導型多能性幹細胞培養在無飼養層上
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 癌症幹細胞 (CSCs, 癌症初始細胞) 通常佔總腫瘤細胞群的 1%-5%。 而該細胞群被認為是影響腫瘤發生、生長以及轉移的主要原因。然而,在進行酶消化反應之後很難將癌細胞與原生組織中的其他細胞 (即纖維母細胞、血細胞等) 區分開。由於癌症幹細胞相較於其他細胞及普通腫瘤細胞,其具有較高的細胞遷移能力的特性。因此,我們開發了膜過濾及膜遷移的方法用來純化極少量的原代癌症幹細胞。並期望能透過膜過濾及膜遷移的方法從腫瘤組織中建立原代結腸癌細胞株,在臨床的應用上用於發展病患專一性的治療方法。
我們設計了一種膜過濾的方法,藉以從人類結腸癌組織中純化並進一步建立原代癌細胞株。本實驗中使用了孔徑 11 微米、20 微米的耐綸網膜以及不同聚乳酸羥基乙酸共聚物濃度3%, 5%, 和10%的聚乳酸羥基乙酸共聚物絲網膜作為膜過濾法中的材料。隨著聚乳酸羥基乙酸共聚物的濃度提升,所製備出的聚乳酸羥基乙酸共聚物絲網膜厚度也隨之增加。其中,聚乳酸羥基乙酸共聚物是具備生物可分解性及高生物相容性的一種高分子材料。而耐綸則是具備非常特殊的物理及化學性質,這些性質讓上述材料能夠更容易地應用在細胞培養的過程中。在原代癌細胞萃取的流程中,我們使用了第四型的膠原蛋白酶對結腸癌組織進行酶消化反應以取得癌細胞懸浮液。隨後,將消化後的結腸癌細胞懸浮液通過不同孔徑與不同生物相容性的薄膜並利用薄膜來捕捉原代的結腸癌細胞。我們預期當結腸癌細胞溶液透過膜過濾方式,並將膜經過一段時間的細胞培養後,原本留在膜上的細胞會逐步的遷移到細胞培養盤上 (此過程為膜遷移法)。之後,我們會使用流式細胞儀檢測各組份細胞對於結腸癌症幹細胞標誌物的表達程度。同時,我們利用軟性瓊脂糖菌落形成檢驗法來測定在經過膜過濾與膜遷移後純化的細胞,透過其形成菌落的能力並作為推估其惡性程度的指標。依我們目前的結果指出,從薄膜中遷移出來的細胞,其具有較高的癌症幹細胞標誌物的表達。同樣的,在軟性瓊脂糖菌落形成檢驗中,我們發現了在相同的條件下由薄膜中遷移出來的細胞其形成菌落的能力相較於其他組分來的高,且能夠形成較大的菌落。 而本研究的最終目標是期望能夠利用膜過濾或者膜遷移的方式進一步的建立病患專一性癌症細胞株,並在未來應用在發展精準且有效率的癌症治療上。
摘要(英) Cancer stem cells (CSCs, cancer-initiating cells) typically comprise 1%–5% of the total tumor cell population. This cell population is considered to be primarily responsible for tumor initiation, growth, and metastasis. However, it is hard to distinguish cancer cells from other cells (i.e. fibroblasts, blood cells, etc.) in primary tissue after enzyme digestion process. Therefore, We develop membrane filtration and migration method to target and purify rare primary CSCs based on their high migration mobility characteristics compared with other tissue cells. It is expected to establish the primary colon cancer cell line from primary tumor tissue by the membrane filtration and migration method for the development of patient specific therapy in clinical application.
We designed a membrane filtration method to purify and further establish primary colon cancer cell line from human colon cancer tissue. Nylon mesh filters with pore size of 11 μm and 20 μm and PLGA (poly (lactic-co-glycolic acid))-silk screen membranes with different PLGA concentration 3%, 5%, and 10% as the membranes are used in this study where PLGA has biodegradation and biocompatibility properties. With increasing PLGA concentration, the thickness of the PLGA-silk screen membranes also increased. Nylon has unique physical and chemical properties. These properties can also apply to cell culture process. In the primary cancer cell extraction procedures, the colon cancer tissue was digested by collagenase type IV at first. After digestion of the tissue, the primary colon cancer cell solution was permeated through the membranes with different pore size and different degree of biocompatibility. These membranes were used to capture primary colon cancer cells, and the cells on the membranes were expected to migrate into the culture dishes during the cultivation of the membranes in the culture medium (i.e., membrane migration method) after the filtration of colon cancer tissue solution through the membranes. Afterwards, the expression of cancer stem cell markers, CD133 and CD44 was evaluated by flow cytometry. Furthermore, the malignancy index of primary cells and the cells purified by the membrane filtration and migration method was evaluated by soft agarose colony forming assay. It is expected that the cells migrate from the membranes will have higher expression of the colon cancer stem cell surface markers. The similar results may be obtained in soft agarose colony forming assay where the cells show higher colony forming efficiency and bigger colony size. The goal of this project is to establish a patient-specific colon cancer cell line by the membrane filtration and/or migration method for precision medicine in the future.
關鍵字(中) ★ 結腸癌
★ 膜過濾
★ 病患專一性
★ 癌症細胞株
關鍵字(英) ★ colon cancer
★ membrane filtration
★ patient-specific
★ cancer cell lines
論文目次 Abstract I
摘要 V
Index of contents VII
Index of figure X
Index of table XIII
Chpater 1 Introduction 1
1-1 Stem cells and cancer stem cells 1
1-1-1 Stem cells 1
1-1-2 Cancer stem cells 3
1-2 Cells isolation methods 8
1-2-1 Fluorescence-activated cell sorting (FACS) 8
1-2-2 Magnetic-activated cell sorting (MACS) 10
1-2-3 Membrane filtration 14
1-2-4 Density gradient centrifugation 15
1-3 Identification of cancer stem cells 16
1-3-1 Cancer stem cell surface marker analysis 16
1-3-2 in vitro tumorigenicity assay 17
1-3-3 Immunofluorescence staining 19
1-3-4 Concentration detection of carcinoembryonic antigen 20
Chpater 2 Materials and methods 23
2-1 Experimental materials 23
2-1-1 Membrane 23
2-1-2 Cell sources 23
2-1-3 Cell cultivation dishes 24
2-1-4 Decellularization dish 24
2-1-5 Dissociation and passaging agent 25
2-1-6 Ammonium-Chloride-Potassium (ACK) lysing buffer 25
2-1-7 Phosphate buffer saline solution (PBS) 25
2-1-8 Culture medium 25
2-1-9 Identification of cancer stem cells 26
2-2 Experimental methods 26
2-2-1 PLGA-silk screen membrane 26
2-2-2 Preparation of the decellularization dishes 27
2-2-3 Cell culture medium 28
2-2-4 Preparation of the phosphate buffer saline solution (PBS) 29
2-2-5 Preparation of the digestion agent 29
2-2-6 Preparation of ACK lysis buffer 29
2-2-7 Cancer stem cells sorting method 30
2-2-8 Cell lines 32
2-2-9 Cell culture 34
2-2-10 Identification of cancer stem cells 36
Chpater 3 Results and discussion 41
3-1 Characterization of several membranes 41
3-2 Isolation of cancer stem cells from LoVo cell line by membrane filtration method 45
3-2-1 Characterization of the LoVo cells after membrane filtration method 45
3-2-2 Identification of the cancer stem cells from surface marker analysis using flow cytometry 49
3-2-3 Evaluation of tumorigenic potential of the cells from each fraction 54
3-3 Characterization of the primary cells 60
3-3-1 Isolation of the primary cancer cells by membrane filtration method 60
3-3-2 Modification of the isolation process of primary human colon cancer cells 62
3-3-3 The growth rate of primary human colon cancer cells 68
3-3-4 Flow cytometry analysis of primary human colon cancer cells 69
3-3-5 Purification of the primary human colon cancer cells by membrane filtration method 70
3-3-6 CEA concentration detection of primary human colon cancer cell 73
Chpater 4 Conclusion 77
Reference 79
Appendix 87
參考文獻 1. Ramalho-Santos, M. and H. Willenbring, On the Origin of the Term “Stem Cell”. Cell Stem Cell, 2007. 1(1): p. 35-38.
2. Siminovitch, L., E.A. McCulloch, and J.E. Till, THE DISTRIBUTION OF COLONY-FORMING CELLS AMONG SPLEEN COLONIES. J Cell Comp Physiol, 1963. 62: p. 327-36.
3. Good, R.A., Bone marrow transplantation for immunodeficiency diseases. Am J Med Sci, 1987. 294(2): p. 68-74.
4. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
6. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
7. Shamblott, M.J., et al., Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences, 1998. 95(23): p. 13726.
8. Lemischka, I., The power of stem cells reconsidered? Proceedings of the National Academy of Sciences, 1999. 96(25): p. 14193.
9. Lemischka, I., A few thoughts about the plasticity of stem cells. Experimental Hematology, 2002. 30(8): p. 848-852.
10. Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p. 639-48.
11. Clarke, D.L., et al., Generalized Potential of Adult Neural Stem Cells. Science, 2000. 288(5471): p. 1660.
12. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
13. Kalra, K. and P. Tomar, Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2014. 2(7): p. 919-930.
14. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
15. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Vol. 01. 2011.
16. Hayes, M., et al., Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype? Crit Care, 2012. 16(2): p. 205.
17. Bryder, D., D.J. Rossi, and I.L. Weissman, Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. The American journal of pathology, 2006. 169(2): p. 338-346.
18. Tallone, T., et al., Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res, 2011. 4(2): p. 200-10.
19. Clevers, H., The cancer stem cell: premises, promises and challenges. Nat Med, 2011. 17(3): p. 313-9.
20. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-8.
21. Gisselsson, D., Intratumor diversity and clonal evolution in cancer--a skeptical standpoint. Adv Cancer Res, 2011. 112: p. 1-9.
22. Pietras, A., Cancer stem cells in tumor heterogeneity. Adv Cancer Res, 2011. 112: p. 255-81.
23. Mora, J., N.K.V. Cheung, and W.L. Gerald, Genetic heterogeneity and clonal evolution in neuroblastoma. British Journal of Cancer, 2001. 85(2): p. 182-189.
24. Shackney, S.E. and T.V. Shankey, Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry, 1995. 21(1): p. 2-5.
25. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 306-313.
26. Calderwood, S.K., Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discovery medicine, 2013. 15(82): p. 188-194.
27. Yachida, S., et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010. 467: p. 1114.
28. Khalique, L., et al., The clonal evolution of metastases from primary serous epithelial ovarian cancers. Int J Cancer, 2009. 124(7): p. 1579-86.
29. Durante, F., Nesso fisio-pathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memor Observ Chir Pract, 1874. 11: p. 217-226.
30. Cohnheim, J., Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Archiv, 1875. 65(1): p. 64-69.
31. Saccà, M.M., et al., Cancer Stem Cells, in Biotechnology in Surgery, A. Barbarisi, Editor. 2011, Springer Milan: Milano. p. 151-168.
32. Fulawka, L., P. Donizy, and A. Halon, Cancer stem cells--the current status of an old concept: literature review and clinical approaches. Biological research, 2014. 47(1): p. 66-66.
33. Mekonnen Ali, A., Stem Cells and Cancer. Journal of Cell Science & Therapy, 2016. 07(05).
34. Sell, S., Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 2004. 51(1): p. 1-28.
35. Sell, S., Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect, 1993. 101 Suppl 5: p. 15-26.
36. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-648.
37. Silvan, U., et al., Embryonic and Cancer Stem Cells - two views of the same landscape. 2011. p. 371-398.
38. Tirino, V., et al., Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. Faseb j, 2013. 27(1): p. 13-24.
39. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
40. Lathia, J.D., et al., Cancer stem cells in glioblastoma. Genes & development, 2015. 29(12): p. 1203-1217.
41. Abdul Khalek, F.J., G.I. Gallicano, and L. Mishra, Colon cancer stem cells. Gastrointestinal cancer research : GCR, 2010(Suppl 1): p. S16-S23.
42. Raj, D., A. Aicher, and C. Heeschen, Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. STEM CELLS, 2015. 33(10): p. 2893-2902.
43. Ailles, L.E. and I.L. Weissman, Cancer stem cells in solid tumors. Curr Opin Biotechnol, 2007. 18(5): p. 460-6.
44. Dick, J.E., Stem cell concepts renew cancer research. Blood, 2008. 112(13): p. 4793-807.
45. Prasetyanti, P.R. and J.P. Medema, Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer, 2017. 16(1): p. 41.
46. Marjanovic, N.D., R.A. Weinberg, and C.L. Chaffer, Cell plasticity and heterogeneity in cancer. Clin Chem, 2013. 59(1): p. 168-79.
47. Kaur, G. and J.M. Dufour, Cell lines: Valuable tools or useless artifacts. Spermatogenesis, 2012. 2(1): p. 1-5.
48. Fan, F., et al., The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells. British Journal Of Cancer, 2014. 112: p. 539.
49. Bonner, W.A., et al., Fluorescence Activated Cell Sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
50. Parks, D.R. and L.A. Herzenberg, Fluorescence-activated cell sorting: theory, experimental optimization, and applications in lymphoid cell biology. Methods Enzymol, 1984. 108: p. 197-241.
51. Tomlinson, M.J., et al., Cell separation: Terminology and practical considerations. Journal of tissue engineering, 2012. 4: p. 2041731412472690-2041731412472690.
52. Lakowicz, J.R., Introduction to fluorescence, in Principles of fluorescence spectroscopy. 1999, Springer. p. 1-23.
53. Thiel, A., A. Scheffold, and A. Radbruch, Immunomagnetic cell sorting--pushing the limits. Immunotechnology, 1998. 4(2): p. 89-96.
54. Basu, S., et al., Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE, 2010(41): p. 1546.
55. Gray, D.W., et al., Separation of pancreatic islets by fluorescence-activated sorting. Diabetes, 1989. 38 Suppl 1: p. 133-5.
56. Hewitt, Z., et al., Fluorescence-activated single cell sorting of human embryonic stem cells. Cloning Stem Cells, 2006. 8(3): p. 225-34.
57. Kemshead, J.T. and J. Ugelstad, Magnetic separation techniques: their application to medicine. Mol Cell Biochem, 1985. 67(1): p. 11-8.
58. Miltenyi, S., et al., High gradient magnetic cell separation with MACS. Cytometry, 1990. 11(2): p. 231-8.
59. Schmitz, B., et al., Magnetic activated cell sorting (MACS)--a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol, 1994. 52(5): p. 267-75.
60. Seidl, J., R. Knuechel, and L.A. Kunz-Schughart, Evaluation of membrane physiology following fluorescence activated or magnetic cell separation. Cytometry, 1999. 36(2): p. 102-11.
61. Cammareri, P., et al., Isolation and culture of colon cancer stem cells. Methods Cell Biol, 2008. 86: p. 311-24.
62. Zborowski, M. and J.J. Chalmers, Rare cell separation and analysis by magnetic sorting. Analytical chemistry, 2011. 83(21): p. 8050-8056.
63. Sheng, X., et al., Isolation and enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free medium. Oncology letters, 2013. 5(3): p. 787-792.
64. Molnar, B., et al., Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin Cancer Res, 2001. 7(12): p. 4080-5.
65. Cudjoe, K.S. and R. Krona, Detection of Salmonella from raw food samples using Dynabeads® anti-Salmonella and a conventional reference method. International Journal of Food Microbiology, 1997. 37(1): p. 55-62.
66. Neurauter, A.A., et al., Cell isolation and expansion using Dynabeads. Adv Biochem Eng Biotechnol, 2007. 106: p. 41-73.
67. Dainiak, M.B., et al., Methods in cell separations. Adv Biochem Eng Biotechnol, 2007. 106: p. 1-18.
68. Holt, L.M. and M.L. Olsen, Novel Applications of Magnetic Cell Sorting to Analyze Cell-Type Specific Gene and Protein Expression in the Central Nervous System. PLOS ONE, 2016. 11(2): p. e0150290.
69. Orfao, A. and A. Ruiz-Arguelles, General concepts about cell sorting techniques. Clin Biochem, 1996. 29(1): p. 5-9.
70. Seal, S.H., A SIEVE FOR THE ISOLATION OF CANCER CELLS AND OTHER LARGE CELLS FROM THE BLOOD. Cancer, 1964. 17: p. 637-42.
71. Folstad, L., M. Look, and M. Pallavicini, A polycarbonate filter technique for collection of sorted cells. Cytometry, 1982. 3(1): p. 64-5.
72. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, 2006. 78A(3): p. 491-499.
73. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J Biomed Mater Res A, 2008. 85(4): p. 853-61.
74. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
75. Low, W.S. and W.A.B. Wan Abas, Benchtop technologies for circulating tumor cells separation based on biophysical properties. BioMed research international, 2015. 2015: p. 239362-239362.
76. Seal, S.H., Silicone flotation: A simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer, 1959. 12(3): p. 590-595.
77. Fawcett, D.W., B.L. Vallee, and M.H. Soule, A method for concentration and segregation of malignant cells from bloody, pleural, and peritoneal fluids. Science, 1950. 111(2872): p. 34-6, illust.
78. Pretlow, T.G., C.M. Jones, and T.P. Pretlow, Separation of tumor cells by density gradient centrifugation: recent work with human tumors and a discussion of the kind of quantitation needed in cell separation experiments11Address reprint requests to Dr. Thomas G. Pretlow II, Department of Pathology, University of Alabama in Birmingham, University Station, Birmingham, Alabama 35294. Biophysical Chemistry, 1976. 5(1): p. 99-106.
79. Gertler, R., et al., Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res, 2003. 162: p. 149-55.
80. Hamburger, A.W., F.E. Dunn, and C.P. White, Percoll density gradient separation of cells from human malignant effusions. British journal of cancer, 1985. 51(2): p. 253-258.
81. Kuhns, D.B., et al., Isolation and Functional Analysis of Human Neutrophils. Current protocols in immunology, 2015. 111: p. 7.23.1-7.23.16.
82. Zhang, J., K. Chen, and Z.H. Fan, Circulating Tumor Cell Isolation and Analysis. Advances in clinical chemistry, 2016. 75: p. 1-31.
83. Rosenberg, R., et al., Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry, 2002. 49(4): p. 150-8.
84. KÖHler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975. 256(5517): p. 495-497.
85. Fiebig, H., et al., [Characterization of a series of monoclonal antibodies against human T cells]. Allerg Immunol (Leipz), 1984. 30(4): p. 242-50.
86. Bernard, A. and L. Boumsell, [Human leukocyte differentiation antigens]. Presse Med, 1984. 13(38): p. 2311-6.
87. Kuranda, K., et al., Expression of CD34 in hematopoietic cancer cell lines reflects tightly regulated stem/progenitor-like state. J Cell Biochem, 2011. 112(5): p. 1277-85.
88. Wang, K., G. Wei, and D. Liu, CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Experimental hematology & oncology, 2012. 1(1): p. 36-36.
89. Plesa, A., et al., Mobilization of CD34(+)CD38(-) hematopoietic stem cells after priming in acute myeloid leukemia. World journal of stem cells, 2013. 5(4): p. 196-204.
90. Al-Mawali, A., D. Gillis, and I. Lewis, Immunoprofiling of leukemic stem cells CD34+/CD38-/CD123+ delineate FLT3/ITD-positive clones. Journal of hematology & oncology, 2016. 9(1): p. 61-61.
91. Ricardo, S., et al., Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 2011. 64(11): p. 937.
92. Kabel, A.M., Tumor markers of breast cancer: New prospectives. Journal of Oncological Sciences, 2017. 3(1): p. 5-11.
93. Cheng, J.-X., B.-L. Liu, and X. Zhang, How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treatment Reviews, 2009. 35(5): p. 403-408.
94. Son, M.J., et al., SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell, 2009. 4(5): p. 440-452.
95. He, J., et al., CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Molecular & cellular proteomics : MCP, 2012. 11(6): p. M111.010744-M111.010744.
96. Jiao, J., et al., Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PloS one, 2012. 7(8): p. e42564-e42564.
97. Patrawala, L., et al., Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res, 2007. 67(14): p. 6796-805.
98. Leung, E.L.-H., et al., Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties. PLOS ONE, 2010. 5(11): p. e14062.
99. Yan, X., et al., Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep, 2013. 30(6): p. 2733-40.
100. Gutova, M., et al., Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung Cancer. PLOS ONE, 2007. 2(2): p. e243.
101. Yang, Z.F., et al., Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008. 47(3): p. 919-28.
102. Sukowati, C.H.C., et al., The expression of CD90/Thy-1 in hepatocellular carcinoma: an in vivo and in vitro study. PloS one, 2013. 8(10): p. e76830-e76830.
103. Wang, C., et al., Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncology reports, 2012. 28(4): p. 1301-1308.
104. Jing, F., et al., Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol, 2015. 46(4): p. 1582-8.
105. Weichert, W., et al., ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. Journal of clinical pathology, 2004. 57(11): p. 1160-1164.
106. Leng, Z., et al., Lgr5+CD44+EpCAM+ Strictly Defines Cancer Stem Cells in Human Colorectal Cancer. Cell Physiol Biochem, 2018. 46(2): p. 860-872.
107. Shenoy, A., E. Butterworth, and E.H. Huang, ALDH as a marker for enriching tumorigenic human colonic stem cells. Methods in molecular biology (Clifton, N.J.), 2012. 916: p. 373-385.
108. Gold, P. and S.O. Freedman, DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES. The Journal of experimental medicine, 1965. 121(3): p. 439-462.
109. Munshi, A., M. Hobbs, and R.E. Meyn, Clonogenic cell survival assay. Methods Mol Med, 2005. 110: p. 21-8.
110. Rajendran, V. and M.V. Jain, In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. Methods Mol Biol, 2018. 1692: p. 89-95.
111. Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9.
112. Castillo, V., et al., Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. International journal of oncology, 2014. 45(3): p. 985-994.
113. Li, P., et al., Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int J Med Sci, 2013. 10(4): p. 399-407.
114. Podberezin, M., J. Wen, and C.C. Chang, Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med, 2013. 137(8): p. 1111-6.
115. Wang, L., et al., Enrichment and characterization of cancer stem‑like cells from a cervical cancer cell line. Molecular medicine reports, 2014. 9(6): p. 2117-2123.
116. Shang, Z., et al., Isolation of cancer progenitor cells from cancer stem cells in gastric cancer. Molecular medicine reports, 2017. 15(6): p. 3637-3643.
117. Chiarugi, P. and E. Giannoni, Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol, 2008. 76(11): p. 1352-64.
118. Taddei, M.L., et al., Anoikis: an emerging hallmark in health and diseases. J Pathol, 2012. 226(2): p. 380-93.
119. de Larco, J.E. and G.J. Todaro, Growth factors from murine sarcoma virus-transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 1978. 75(8): p. 4001-4005.
120. Roberts, A.B., et al., Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A, 1985. 82(1): p. 119-23.
121. Gao, C.-F., et al., Proliferation and invasion: Plasticity in tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10528-10533.
122. Horibata, S., et al., Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. Journal of visualized experiments : JoVE, 2015(99): p. e52727-e52727.
123. Coons, A.H., H.J. Creech, and R.N. Jones, Immunological Properties of an Antibody Containing a Fluorescent Group. Proceedings of the Society for Experimental Biology and Medicine, 1941. 47(2): p. 200-202.
124. Fan, Y., et al., Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab on a Chip, 2018. 18(8): p. 1151-1173.
125. Friou, G.J., Immunofluorescence and antinuclear antibodies. Arthritis & Rheumatism, 1964. 7(2): p. 161-166.
126. Härtig, W. and J.M. Fritschy, Immunofluorescence: conjugation of dyes to antibodies. eLS, 2000.
127. Hammarstrom, S., The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol, 1999. 9(2): p. 67-81.
128. Duffy, M.J., Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem, 2001. 47(4): p. 624-30.
129. Younesi, M., et al., A Prospective Study of Serum Carcinoembryonic Antigen in Patients with Newly Diagnosed Colorectal Cancer and Healthy Individuals. Vol. 4. 2016.
130. Asad-Ur-Rahman, F. and M.W. Saif, Elevated Level of Serum Carcinoembryonic Antigen (CEA) and Search for a Malignancy: A Case Report. Cureus, 2016. 8(6): p. e648-e648.
131. Dbouk, H.A., et al., Significance of CEA and VEGF as Diagnostic Markers of Colorectal Cancer in Lebanese Patients. The open clinical cancer journal, 2007. 1: p. 1-5.
132. Thomson, D.M., et al., The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci U S A, 1969. 64(1): p. 161-7.
133. Higuchi, A., et al., Enhanced CEA production associated with aspirin in a culture of CW-2 cells on some polymeric films. Cytotechnology, 1999. 31(3): p. 233-242.
134. Gao, Y., et al., Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and Ferritin as Diagnostic Markers and Factors of Clinical Parameters for Colorectal Cancer. Scientific reports, 2018. 8(1): p. 2732-2732.
135. Barbedo, J., Automatic Object Counting In Neubauer Chambers. 2013
指導教授 樋口亞紺(Akon Higuchi) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明