參考文獻 |
1. Ramalho-Santos, M. and H. Willenbring, On the Origin of the Term “Stem Cell”. Cell Stem Cell, 2007. 1(1): p. 35-38.
2. Siminovitch, L., E.A. McCulloch, and J.E. Till, THE DISTRIBUTION OF COLONY-FORMING CELLS AMONG SPLEEN COLONIES. J Cell Comp Physiol, 1963. 62: p. 327-36.
3. Good, R.A., Bone marrow transplantation for immunodeficiency diseases. Am J Med Sci, 1987. 294(2): p. 68-74.
4. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
5. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
6. Bonnet, D. and J.E. Dick, Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 1997. 3(7): p. 730-7.
7. Shamblott, M.J., et al., Derivation of pluripotent stem cells from cultured human primordial germ cells. Proceedings of the National Academy of Sciences, 1998. 95(23): p. 13726.
8. Lemischka, I., The power of stem cells reconsidered? Proceedings of the National Academy of Sciences, 1999. 96(25): p. 14193.
9. Lemischka, I., A few thoughts about the plasticity of stem cells. Experimental Hematology, 2002. 30(8): p. 848-852.
10. Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004. 116(5): p. 639-48.
11. Clarke, D.L., et al., Generalized Potential of Adult Neural Stem Cells. Science, 2000. 288(5471): p. 1660.
12. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006. 126(4): p. 663-76.
13. Kalra, K. and P. Tomar, Stem cell: basics, classification and applications. American Journal of Phytomedicine and Clinical Therapeutics, 2014. 2(7): p. 919-930.
14. Mitalipov, S. and D. Wolf, Totipotency, pluripotency and nuclear reprogramming. Adv Biochem Eng Biotechnol, 2009. 114: p. 185-99.
15. Bindu A, H. and S. B, Potency of Various Types of Stem Cells and their Transplantation. Vol. 01. 2011.
16. Hayes, M., et al., Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype? Crit Care, 2012. 16(2): p. 205.
17. Bryder, D., D.J. Rossi, and I.L. Weissman, Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. The American journal of pathology, 2006. 169(2): p. 338-346.
18. Tallone, T., et al., Adult human adipose tissue contains several types of multipotent cells. J Cardiovasc Transl Res, 2011. 4(2): p. 200-10.
19. Clevers, H., The cancer stem cell: premises, promises and challenges. Nat Med, 2011. 17(3): p. 313-9.
20. Nowell, P.C., The clonal evolution of tumor cell populations. Science, 1976. 194(4260): p. 23-8.
21. Gisselsson, D., Intratumor diversity and clonal evolution in cancer--a skeptical standpoint. Adv Cancer Res, 2011. 112: p. 1-9.
22. Pietras, A., Cancer stem cells in tumor heterogeneity. Adv Cancer Res, 2011. 112: p. 255-81.
23. Mora, J., N.K.V. Cheung, and W.L. Gerald, Genetic heterogeneity and clonal evolution in neuroblastoma. British Journal of Cancer, 2001. 85(2): p. 182-189.
24. Shackney, S.E. and T.V. Shankey, Genetic and phenotypic heterogeneity of human malignancies: finding order in chaos. Cytometry, 1995. 21(1): p. 2-5.
25. Greaves, M. and C.C. Maley, Clonal evolution in cancer. Nature, 2012. 481(7381): p. 306-313.
26. Calderwood, S.K., Tumor heterogeneity, clonal evolution, and therapy resistance: an opportunity for multitargeting therapy. Discovery medicine, 2013. 15(82): p. 188-194.
27. Yachida, S., et al., Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 2010. 467: p. 1114.
28. Khalique, L., et al., The clonal evolution of metastases from primary serous epithelial ovarian cancers. Int J Cancer, 2009. 124(7): p. 1579-86.
29. Durante, F., Nesso fisio-pathologico tra la struttura dei nei materni e la genesi di alcuni tumori maligni. Arch Memor Observ Chir Pract, 1874. 11: p. 217-226.
30. Cohnheim, J., Congenitales, quergestreiftes muskelsarkom der nieren. Virchows Archiv, 1875. 65(1): p. 64-69.
31. Saccà, M.M., et al., Cancer Stem Cells, in Biotechnology in Surgery, A. Barbarisi, Editor. 2011, Springer Milan: Milano. p. 151-168.
32. Fulawka, L., P. Donizy, and A. Halon, Cancer stem cells--the current status of an old concept: literature review and clinical approaches. Biological research, 2014. 47(1): p. 66-66.
33. Mekonnen Ali, A., Stem Cells and Cancer. Journal of Cell Science & Therapy, 2016. 07(05).
34. Sell, S., Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol, 2004. 51(1): p. 1-28.
35. Sell, S., Cellular origin of cancer: dedifferentiation or stem cell maturation arrest? Environ Health Perspect, 1993. 101 Suppl 5: p. 15-26.
36. Lapidot, T., et al., A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature, 1994. 367(6464): p. 645-648.
37. Silvan, U., et al., Embryonic and Cancer Stem Cells - two views of the same landscape. 2011. p. 371-398.
38. Tirino, V., et al., Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. Faseb j, 2013. 27(1): p. 13-24.
39. Al-Hajj, M., et al., Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A, 2003. 100(7): p. 3983-8.
40. Lathia, J.D., et al., Cancer stem cells in glioblastoma. Genes & development, 2015. 29(12): p. 1203-1217.
41. Abdul Khalek, F.J., G.I. Gallicano, and L. Mishra, Colon cancer stem cells. Gastrointestinal cancer research : GCR, 2010(Suppl 1): p. S16-S23.
42. Raj, D., A. Aicher, and C. Heeschen, Concise Review: Stem Cells in Pancreatic Cancer: From Concept to Translation. STEM CELLS, 2015. 33(10): p. 2893-2902.
43. Ailles, L.E. and I.L. Weissman, Cancer stem cells in solid tumors. Curr Opin Biotechnol, 2007. 18(5): p. 460-6.
44. Dick, J.E., Stem cell concepts renew cancer research. Blood, 2008. 112(13): p. 4793-807.
45. Prasetyanti, P.R. and J.P. Medema, Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer, 2017. 16(1): p. 41.
46. Marjanovic, N.D., R.A. Weinberg, and C.L. Chaffer, Cell plasticity and heterogeneity in cancer. Clin Chem, 2013. 59(1): p. 168-79.
47. Kaur, G. and J.M. Dufour, Cell lines: Valuable tools or useless artifacts. Spermatogenesis, 2012. 2(1): p. 1-5.
48. Fan, F., et al., The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells. British Journal Of Cancer, 2014. 112: p. 539.
49. Bonner, W.A., et al., Fluorescence Activated Cell Sorting. Review of Scientific Instruments, 1972. 43(3): p. 404-409.
50. Parks, D.R. and L.A. Herzenberg, Fluorescence-activated cell sorting: theory, experimental optimization, and applications in lymphoid cell biology. Methods Enzymol, 1984. 108: p. 197-241.
51. Tomlinson, M.J., et al., Cell separation: Terminology and practical considerations. Journal of tissue engineering, 2012. 4: p. 2041731412472690-2041731412472690.
52. Lakowicz, J.R., Introduction to fluorescence, in Principles of fluorescence spectroscopy. 1999, Springer. p. 1-23.
53. Thiel, A., A. Scheffold, and A. Radbruch, Immunomagnetic cell sorting--pushing the limits. Immunotechnology, 1998. 4(2): p. 89-96.
54. Basu, S., et al., Purification of specific cell population by fluorescence activated cell sorting (FACS). Journal of visualized experiments : JoVE, 2010(41): p. 1546.
55. Gray, D.W., et al., Separation of pancreatic islets by fluorescence-activated sorting. Diabetes, 1989. 38 Suppl 1: p. 133-5.
56. Hewitt, Z., et al., Fluorescence-activated single cell sorting of human embryonic stem cells. Cloning Stem Cells, 2006. 8(3): p. 225-34.
57. Kemshead, J.T. and J. Ugelstad, Magnetic separation techniques: their application to medicine. Mol Cell Biochem, 1985. 67(1): p. 11-8.
58. Miltenyi, S., et al., High gradient magnetic cell separation with MACS. Cytometry, 1990. 11(2): p. 231-8.
59. Schmitz, B., et al., Magnetic activated cell sorting (MACS)--a new immunomagnetic method for megakaryocytic cell isolation: comparison of different separation techniques. Eur J Haematol, 1994. 52(5): p. 267-75.
60. Seidl, J., R. Knuechel, and L.A. Kunz-Schughart, Evaluation of membrane physiology following fluorescence activated or magnetic cell separation. Cytometry, 1999. 36(2): p. 102-11.
61. Cammareri, P., et al., Isolation and culture of colon cancer stem cells. Methods Cell Biol, 2008. 86: p. 311-24.
62. Zborowski, M. and J.J. Chalmers, Rare cell separation and analysis by magnetic sorting. Analytical chemistry, 2011. 83(21): p. 8050-8056.
63. Sheng, X., et al., Isolation and enrichment of PC-3 prostate cancer stem-like cells using MACS and serum-free medium. Oncology letters, 2013. 5(3): p. 787-792.
64. Molnar, B., et al., Circulating tumor cell clusters in the peripheral blood of colorectal cancer patients. Clin Cancer Res, 2001. 7(12): p. 4080-5.
65. Cudjoe, K.S. and R. Krona, Detection of Salmonella from raw food samples using Dynabeads® anti-Salmonella and a conventional reference method. International Journal of Food Microbiology, 1997. 37(1): p. 55-62.
66. Neurauter, A.A., et al., Cell isolation and expansion using Dynabeads. Adv Biochem Eng Biotechnol, 2007. 106: p. 41-73.
67. Dainiak, M.B., et al., Methods in cell separations. Adv Biochem Eng Biotechnol, 2007. 106: p. 1-18.
68. Holt, L.M. and M.L. Olsen, Novel Applications of Magnetic Cell Sorting to Analyze Cell-Type Specific Gene and Protein Expression in the Central Nervous System. PLOS ONE, 2016. 11(2): p. e0150290.
69. Orfao, A. and A. Ruiz-Arguelles, General concepts about cell sorting techniques. Clin Biochem, 1996. 29(1): p. 5-9.
70. Seal, S.H., A SIEVE FOR THE ISOLATION OF CANCER CELLS AND OTHER LARGE CELLS FROM THE BLOOD. Cancer, 1964. 17: p. 637-42.
71. Folstad, L., M. Look, and M. Pallavicini, A polycarbonate filter technique for collection of sorted cells. Cytometry, 1982. 3(1): p. 64-5.
72. Higuchi, A., et al., Separation of CD34+ cells from human peripheral blood through polyurethane foaming membranes. Journal of Biomedical Materials Research Part A, 2006. 78A(3): p. 491-499.
73. Higuchi, A., et al., Separation of hematopoietic stem cells from human peripheral blood through modified polyurethane foaming membranes. J Biomed Mater Res A, 2008. 85(4): p. 853-61.
74. Wu, C.H., et al., The isolation and differentiation of human adipose-derived stem cells using membrane filtration. Biomaterials, 2012. 33(33): p. 8228-39.
75. Low, W.S. and W.A.B. Wan Abas, Benchtop technologies for circulating tumor cells separation based on biophysical properties. BioMed research international, 2015. 2015: p. 239362-239362.
76. Seal, S.H., Silicone flotation: A simple quantitative method for the isolation of free-floating cancer cells from the blood. Cancer, 1959. 12(3): p. 590-595.
77. Fawcett, D.W., B.L. Vallee, and M.H. Soule, A method for concentration and segregation of malignant cells from bloody, pleural, and peritoneal fluids. Science, 1950. 111(2872): p. 34-6, illust.
78. Pretlow, T.G., C.M. Jones, and T.P. Pretlow, Separation of tumor cells by density gradient centrifugation: recent work with human tumors and a discussion of the kind of quantitation needed in cell separation experiments11Address reprint requests to Dr. Thomas G. Pretlow II, Department of Pathology, University of Alabama in Birmingham, University Station, Birmingham, Alabama 35294. Biophysical Chemistry, 1976. 5(1): p. 99-106.
79. Gertler, R., et al., Detection of circulating tumor cells in blood using an optimized density gradient centrifugation. Recent Results Cancer Res, 2003. 162: p. 149-55.
80. Hamburger, A.W., F.E. Dunn, and C.P. White, Percoll density gradient separation of cells from human malignant effusions. British journal of cancer, 1985. 51(2): p. 253-258.
81. Kuhns, D.B., et al., Isolation and Functional Analysis of Human Neutrophils. Current protocols in immunology, 2015. 111: p. 7.23.1-7.23.16.
82. Zhang, J., K. Chen, and Z.H. Fan, Circulating Tumor Cell Isolation and Analysis. Advances in clinical chemistry, 2016. 75: p. 1-31.
83. Rosenberg, R., et al., Comparison of two density gradient centrifugation systems for the enrichment of disseminated tumor cells in blood. Cytometry, 2002. 49(4): p. 150-8.
84. KÖHler, G. and C. Milstein, Continuous cultures of fused cells secreting antibody of predefined specificity. Nature, 1975. 256(5517): p. 495-497.
85. Fiebig, H., et al., [Characterization of a series of monoclonal antibodies against human T cells]. Allerg Immunol (Leipz), 1984. 30(4): p. 242-50.
86. Bernard, A. and L. Boumsell, [Human leukocyte differentiation antigens]. Presse Med, 1984. 13(38): p. 2311-6.
87. Kuranda, K., et al., Expression of CD34 in hematopoietic cancer cell lines reflects tightly regulated stem/progenitor-like state. J Cell Biochem, 2011. 112(5): p. 1277-85.
88. Wang, K., G. Wei, and D. Liu, CD19: a biomarker for B cell development, lymphoma diagnosis and therapy. Experimental hematology & oncology, 2012. 1(1): p. 36-36.
89. Plesa, A., et al., Mobilization of CD34(+)CD38(-) hematopoietic stem cells after priming in acute myeloid leukemia. World journal of stem cells, 2013. 5(4): p. 196-204.
90. Al-Mawali, A., D. Gillis, and I. Lewis, Immunoprofiling of leukemic stem cells CD34+/CD38-/CD123+ delineate FLT3/ITD-positive clones. Journal of hematology & oncology, 2016. 9(1): p. 61-61.
91. Ricardo, S., et al., Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of Clinical Pathology, 2011. 64(11): p. 937.
92. Kabel, A.M., Tumor markers of breast cancer: New prospectives. Journal of Oncological Sciences, 2017. 3(1): p. 5-11.
93. Cheng, J.-X., B.-L. Liu, and X. Zhang, How powerful is CD133 as a cancer stem cell marker in brain tumors? Cancer Treatment Reviews, 2009. 35(5): p. 403-408.
94. Son, M.J., et al., SSEA-1 Is an Enrichment Marker for Tumor-Initiating Cells in Human Glioblastoma. Cell Stem Cell, 2009. 4(5): p. 440-452.
95. He, J., et al., CD90 is identified as a candidate marker for cancer stem cells in primary high-grade gliomas using tissue microarrays. Molecular & cellular proteomics : MCP, 2012. 11(6): p. M111.010744-M111.010744.
96. Jiao, J., et al., Identification of CD166 as a surface marker for enriching prostate stem/progenitor and cancer initiating cells. PloS one, 2012. 7(8): p. e42564-e42564.
97. Patrawala, L., et al., Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res, 2007. 67(14): p. 6796-805.
98. Leung, E.L.-H., et al., Non-Small Cell Lung Cancer Cells Expressing CD44 Are Enriched for Stem Cell-Like Properties. PLOS ONE, 2010. 5(11): p. e14062.
99. Yan, X., et al., Identification of CD90 as a marker for lung cancer stem cells in A549 and H446 cell lines. Oncol Rep, 2013. 30(6): p. 2733-40.
100. Gutova, M., et al., Identification of uPAR-positive Chemoresistant Cells in Small Cell Lung Cancer. PLOS ONE, 2007. 2(2): p. e243.
101. Yang, Z.F., et al., Identification of local and circulating cancer stem cells in human liver cancer. Hepatology, 2008. 47(3): p. 919-28.
102. Sukowati, C.H.C., et al., The expression of CD90/Thy-1 in hepatocellular carcinoma: an in vivo and in vitro study. PloS one, 2013. 8(10): p. e76830-e76830.
103. Wang, C., et al., Evaluation of CD44 and CD133 as cancer stem cell markers for colorectal cancer. Oncology reports, 2012. 28(4): p. 1301-1308.
104. Jing, F., et al., Colon cancer stem cell markers CD44 and CD133 in patients with colorectal cancer and synchronous hepatic metastases. Int J Oncol, 2015. 46(4): p. 1582-8.
105. Weichert, W., et al., ALCAM/CD166 is overexpressed in colorectal carcinoma and correlates with shortened patient survival. Journal of clinical pathology, 2004. 57(11): p. 1160-1164.
106. Leng, Z., et al., Lgr5+CD44+EpCAM+ Strictly Defines Cancer Stem Cells in Human Colorectal Cancer. Cell Physiol Biochem, 2018. 46(2): p. 860-872.
107. Shenoy, A., E. Butterworth, and E.H. Huang, ALDH as a marker for enriching tumorigenic human colonic stem cells. Methods in molecular biology (Clifton, N.J.), 2012. 916: p. 373-385.
108. Gold, P. and S.O. Freedman, DEMONSTRATION OF TUMOR-SPECIFIC ANTIGENS IN HUMAN COLONIC CARCINOMATA BY IMMUNOLOGICAL TOLERANCE AND ABSORPTION TECHNIQUES. The Journal of experimental medicine, 1965. 121(3): p. 439-462.
109. Munshi, A., M. Hobbs, and R.E. Meyn, Clonogenic cell survival assay. Methods Mol Med, 2005. 110: p. 21-8.
110. Rajendran, V. and M.V. Jain, In Vitro Tumorigenic Assay: Colony Forming Assay for Cancer Stem Cells. Methods Mol Biol, 2018. 1692: p. 89-95.
111. Franken, N.A., et al., Clonogenic assay of cells in vitro. Nat Protoc, 2006. 1(5): p. 2315-9.
112. Castillo, V., et al., Functional characteristics of cancer stem cells and their role in drug resistance of prostate cancer. International journal of oncology, 2014. 45(3): p. 985-994.
113. Li, P., et al., Hypoxia enhances stemness of cancer stem cells in glioblastoma: an in vitro study. Int J Med Sci, 2013. 10(4): p. 399-407.
114. Podberezin, M., J. Wen, and C.C. Chang, Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med, 2013. 137(8): p. 1111-6.
115. Wang, L., et al., Enrichment and characterization of cancer stem‑like cells from a cervical cancer cell line. Molecular medicine reports, 2014. 9(6): p. 2117-2123.
116. Shang, Z., et al., Isolation of cancer progenitor cells from cancer stem cells in gastric cancer. Molecular medicine reports, 2017. 15(6): p. 3637-3643.
117. Chiarugi, P. and E. Giannoni, Anoikis: a necessary death program for anchorage-dependent cells. Biochem Pharmacol, 2008. 76(11): p. 1352-64.
118. Taddei, M.L., et al., Anoikis: an emerging hallmark in health and diseases. J Pathol, 2012. 226(2): p. 380-93.
119. de Larco, J.E. and G.J. Todaro, Growth factors from murine sarcoma virus-transformed cells. Proceedings of the National Academy of Sciences of the United States of America, 1978. 75(8): p. 4001-4005.
120. Roberts, A.B., et al., Type beta transforming growth factor: a bifunctional regulator of cellular growth. Proc Natl Acad Sci U S A, 1985. 82(1): p. 119-23.
121. Gao, C.-F., et al., Proliferation and invasion: Plasticity in tumor cells. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10528-10533.
122. Horibata, S., et al., Utilization of the Soft Agar Colony Formation Assay to Identify Inhibitors of Tumorigenicity in Breast Cancer Cells. Journal of visualized experiments : JoVE, 2015(99): p. e52727-e52727.
123. Coons, A.H., H.J. Creech, and R.N. Jones, Immunological Properties of an Antibody Containing a Fluorescent Group. Proceedings of the Society for Experimental Biology and Medicine, 1941. 47(2): p. 200-202.
124. Fan, Y., et al., Fluorescent analysis of bioactive molecules in single cells based on microfluidic chips. Lab on a Chip, 2018. 18(8): p. 1151-1173.
125. Friou, G.J., Immunofluorescence and antinuclear antibodies. Arthritis & Rheumatism, 1964. 7(2): p. 161-166.
126. Härtig, W. and J.M. Fritschy, Immunofluorescence: conjugation of dyes to antibodies. eLS, 2000.
127. Hammarstrom, S., The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol, 1999. 9(2): p. 67-81.
128. Duffy, M.J., Carcinoembryonic antigen as a marker for colorectal cancer: is it clinically useful? Clin Chem, 2001. 47(4): p. 624-30.
129. Younesi, M., et al., A Prospective Study of Serum Carcinoembryonic Antigen in Patients with Newly Diagnosed Colorectal Cancer and Healthy Individuals. Vol. 4. 2016.
130. Asad-Ur-Rahman, F. and M.W. Saif, Elevated Level of Serum Carcinoembryonic Antigen (CEA) and Search for a Malignancy: A Case Report. Cureus, 2016. 8(6): p. e648-e648.
131. Dbouk, H.A., et al., Significance of CEA and VEGF as Diagnostic Markers of Colorectal Cancer in Lebanese Patients. The open clinical cancer journal, 2007. 1: p. 1-5.
132. Thomson, D.M., et al., The radioimmunoassay of circulating carcinoembryonic antigen of the human digestive system. Proc Natl Acad Sci U S A, 1969. 64(1): p. 161-7.
133. Higuchi, A., et al., Enhanced CEA production associated with aspirin in a culture of CW-2 cells on some polymeric films. Cytotechnology, 1999. 31(3): p. 233-242.
134. Gao, Y., et al., Evaluation of Serum CEA, CA19-9, CA72-4, CA125 and Ferritin as Diagnostic Markers and Factors of Clinical Parameters for Colorectal Cancer. Scientific reports, 2018. 8(1): p. 2732-2732.
135. Barbedo, J., Automatic Object Counting In Neubauer Chambers. 2013
|