參考文獻 |
1. Deutsch, C.J., Edwards, D.M., and Myers, S., Wound dressings. British Journal of Hospital Medicine, 2017. 78(7): p. C103-C109.
2. Guo, S. and Dipietro, L.A., Factors affecting wound healing. Journal of Dental Research, 2010. 89(3): p. 219-229.
3. Rani, S. and Ritter, T., The Exosome‐A Naturally Secreted Nanoparticle and its Application to Wound Healing. Advanced Materials, 2016. 28(27): p. 5542-5552.
4. 食品藥物管理署., 燒燙傷救星—傷口敷料, 106年衛生福利部新聞, Editor. 2017.
5. 陳筱蓉. 傷口癒合機轉. [Internet] 2017; Available from: http://www.tnha.com.tw/web/images/ckfinder/files/20171010104559.pdf.
6. Senthil, R., Berly, R., Bhargavi Ram, T., and Gobi, N., Electrospun poly(vinyl) alcohol/collagen nanofibrous scaffold hybridized by graphene oxide for accelerated wound healing. The International Journal of Artificial Organs, 2018. 41(8): p. 467-473.
7. Casasola, R., Thomas, N.L., Trybala, A., and Georgiadou, S., Electrospun poly lactic acid (PLA) fibres: Effect of different solvent systems on fibre morphology and diameter. Polymer, 2014. 55(18): p. 4728-4737.
8. Ziabari, M., Mottaghitalab, V., and Haghi, A.K., Application of direct tracking method for measuring electrospun nanofiber diameter. Brazilian Journal of Chemical Engineering, 2009. 26(1): p. 53-62.
9. 林政賢, 利用聚己內酯/褐藻酸鈉之複合電紡絲 擴增癌症幹細胞. 國立中央大學 化學工程與材料工程學系 碩士論文, 2016.
10. Tan, L., Hu, J., Huang, H., Han, J., and Hu, H., Study of multi-functional electrospun composite nanofibrous mats for smart wound healing. International Journal of Biological Macromolecules, 2015. 79: p. 469-476.
11. Mokhena, T.C. and Luyt, A.S., Electrospun alginate nanofibres impregnated with silver nanoparticles: Preparation, morphology and antibacterial properties. Carbohydrate Polymers, 2017. 165: p. 304-312.
12. Rath, G., Hussain, T., Chauhan, G., Garg, T., and Goyal, A.K., Collagen nanofiber containing silver nanoparticles for improved wound-healing applications. Journal of Drug Targeting, 2016. 24(6): p. 520-529.
13. Trinca, R.B., Westin, C.B., da Silva, J.A.F., and Moraes, Â.M., Electrospun multilayer chitosan scaffolds as potential wound dressings for skin lesions. European Polymer Journal, 2017. 88: p. 161-170.
14. Yildirimer, L. and Seifalian, A.M., Three-dimensional biomaterial degradation - Material choice, design and extrinsic factor considerations. Biotechnology Advances, 2014. 32(5): p. 984-999.
15. Augustine, R., Kalarikkal, N., and Thomas, S., Electrospun PCL membranes incorporated with biosynthesized silver nanoparticles as antibacterial wound dressings. Applied Nanoscience, 2015. 6(3): p. 337-344.
16. Alippilakkotte, S., Kumar, S., and Sreejith, L., Fabrication of PLA/Ag nanofibers by green synthesis method using Momordica charantia fruit extract for wound dressing applications. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017. 529: p. 771-782.
17. Jaganathan, S.K. and Mani, M.P., Single-stage synthesis of electrospun polyurethane scaffold impregnated with zinc nitrate nanofibers for wound healing applications. Journal of Applied Polymer Science, 2019. 136(3): p. 46942-46951.
18. Ren, K., Wang, Y., Sun, T., Yue, W., and Zhang, H., Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes. Materials Science and Engineering: C, 2017. 78: p. 324-332.
19. Aktar, B., Erdal, M., Sagirli, O., Güngör, S., and Özsoy, Y., Optimization of Biopolymer Based Transdermal Films of Metoclopramide as an Alternative Delivery Approach. Polymers, 2014. 6(5): p. 1350-1365.
20. Costa, M.J., Marques, A.M., Pastrana, L.M., Teixeira, J.A., Sillankorva, S.M., and Cerqueira, M.A., Physicochemical properties of alginate-based films: Effect of ionic crosslinking and mannuronic and guluronic acid ratio. Food Hydrocolloids, 2018. 81: p. 442-448.
21. Taskin, A.K., Yasar, M., Ozaydin, I., Kaya, B., Bat, O., Ankarali, S., Yildirim, U., and Aydin, M., The hemostatic effect of calcium alginate in experimental splenic injury model. Ulus Travma Acil Cerrahi Derg, 2013. 19(3): p. 195-199.
22. Dhage, H. Blood Clotting: Mechanisms and Stages. Biology Discussion; Available from: http://www.biologydiscussion.com/hematology-2/blood-clotting/blood-clotting-mechanisms-and-stages-blood-hematology-biology/80456.
23. Wang, C., Luo, W., Li, P., Li, S., Yang, Z., Hu, Z., Liu, Y., and Ao, N., Preparation and evaluation of chitosan/alginate porous microspheres/Bletilla striata polysaccharide composite hemostatic sponges. Carbohydrate Polymers, 2017. 174: p. 432-442.
24. Osathanon, T., Chanjavanakul, P., Kongdecha, P., Clayhan, P., and Huynh, N.C.-N., Polycaprolactone-Based Biomaterials for Guided Tissue Regeneration Membrane, in Periodontitis - A Useful Reference,Chapter 8. 2017, (Intech). p. 171-188.
25. Zhang, S., Campagne, C., and Salaün, F., Influence of Solvent Selection in the Electrospraying Process of Polycaprolactone. Applied Sciences, 2019. 9(3): p. 402-438.
26. Augustine, R., Dominic, E.A., Reju, I., Kaimal, B., Kalarikkal, N., and Thomas, S., Electrospun polycaprolactone membranes incorporated with ZnO nanoparticles as skin substitutes with enhanced fibroblast proliferation and wound healing. RSC Advances, 2014. 4(47): p. 24777-24786.
27. Moura, L.I., Dias, A.M., Carvalho, E., and de Sousa, H.C., Recent advances on the development of wound dressings for diabetic foot ulcer treatment--a review. Acta Biomaterialia, 2013. 9(7): p. 7093-7114.
28. Pinzon-Garcia, A.D., Cassini-Vieira, P., Ribeiro, C.C., de Matos Jensen, C.E., Barcelos, L.S., Cortes, M.E., and Sinisterra, R.D., Efficient cutaneous wound healing using bixin-loaded PCL nanofibers in diabetic mice. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017. 105(7): p. 1938-1949.
29. Xie, P., Ji, W., and Wei, Z., Preparation and Properties of Silver Nanoparticles. Characterization and Application of Nanomaterials, 2018. 1(1): p. 40-48.
30. 呂晃志. 揭開抗菌、防腐的神奇面紗 ─奈米銀. 2007; Available from: https://www.foryou8888.com/static/website/53/53211/files/%E5%A5%88%E7%B1%B3%E9%8A%80.pdf.
31. Barani, H., Boroumand, M.N., and Rafiei, S., Application of silver nanoparticles as an antibacterial mordant in wool natural dyeing: Synthesis, antibacterial activity, and color characteristics. Fibers and Polymers, 2017. 18(4): p. 658-665.
32. Lakshman, L.R., Shalumon, K.T., Nair, S.V., Jayakumar, R., and Nair, S.V., Preparation of Silver Nanoparticles Incorporated Electrospun Polyurethane Nano-fibrous Mat for Wound Dressing. Journal of Macromolecular Science, Part A, 2010. 47(10): p. 1012-1018.
33. 羅翊瑋, 楊水平, 化學實驗室實驗:銀奈米粒子的合成(Synthesis of Silver Nanoparticles)[I]. 高瞻自然科學教學資源平台 2011; Available from: http://highscope.ch.ntu.edu.tw/wordpress/?p=30347.
34. Deshmukh, S.P., Patil, S.M., Mullani, S.B., and Delekar, S.D., Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering C, 2019. 97: p. 954-965.
35. Fewtrell, L. Silver: water disinfection and toxicity. 2014; 1-53. Available from: https://www.novozone.co.nz/pdf/Silver_water_disinfection.pdf.
36. Carbone, M., Donia, D.T., Sabbatella, G., and Antiochia, R., Silver nanoparticles in polymeric matrices for fresh food packaging. Journal of King Saud University - Science, 2016. 28(4): p. 273-279.
37. Ahmadi, F., Abolghasemi, S., Parhizgari, N., and Moradpour, F., Effect of Silver Nanoparticles on Common Bacteria in Hospital Surfaces. Jundishapur Journal of Microbiology, 2013. 6(3): p. 209-214.
38. Yan, X., He, B., Liu, L., Qu, G., Shi, J., Hu, L., and Jiang, G., Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics, 2018. 10(4): p. 557-564.
39. Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J., Ram´ırez, J.T., and Yacaman, M.J., The bactericidal effect of silver nanoparticles. Nanotechnology, 2005. 16(10): p. 2346-2353.
40. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F., and Che, C.M., Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Research, 2006. 5(4): p. 916-924.
41. Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park, Y.K., Park, Y.H., Hwang, C.Y., Kim, Y.K., Lee, Y.S., Jeong, D.H., and Cho, M.H., Antimicrobial effects of silver nanoparticles. Nanomedicine, 2007. 3(1): p. 95-101.
42. Murphy, M., Ting, K., Zhang, X., Soo, C., and Zheng, Z., Current Development of Silver Nanoparticle Preparation, Investigation, and Application in the Field of Medicine. Journal of Nanomaterials, 2015. 2015: p. 1-12.
43. GhavamiNejad, A., Rajan Unnithan, A., Ramachandra Kurup Sasikala, A., Samarikhalaj, M., Thomas, R.G., Jeong, Y.Y., Nasseri, S., Murugesan, P., Wu, D., Hee Park, C., and Kim, C.S., Mussel-Inspired Electrospun Nanofibers Functionalized with Size-Controlled Silver Nanoparticles for Wound Dressing Application. ACS Applied Materials & Interfaces, 2015. 7(22): p. 12176-12183.
44. Barrientos, S., Stojadinovic, O., Golinko, M.S., Brem, H., and Tomic-Canic, M., Growth factors and cytokines in wound healing. Wound Repair and Regeneration, 2008. 16(5): p. 585-601.
45. Ohnstedt, E., Lofton Tomenius, H., Vagesjo, E., and Phillipson, M., The discovery and development of topical medicines for wound healing. Expert Opinion on Drug Discovery, 2019. 14(5): p. 485-497.
46. Blakytny, R. and Jude, E., The molecular biology of chronic wounds and delayed healing in diabetes. Diabetic Medicine, 2006. 23(6): p. 594-608.
47. Sil, S., Periyasamy, P., Thangaraj, A., Chivero, E.T., and Buch, S., PDGF/PDGFR axis in the neural systems. Molecular Aspects of medicine, 2018. 62: p. 63-74.
48. Yamakawa, S. and Hayashida, K., Advances in surgical applications of growth factors for wound healing. Burns & Trauma, 2019. 7(1): p. 10-23.
49. Breitbart, A.S., Laser, J., Parrett, B., Porti, D., Grant, R.T., Grande, D.A., and Mason, J.M., Accelerated diabetic wound healing using cultured dermal fibroblasts retrovirally transduced with the platelet-derived growth factor B gene. Annals of Plastic Surgery, 2003. 51(4): p. 409-414.
50. Pierce, G.F., Tarpley, J.E., Yanagihara, D., Mustoe, T., Fox, G.M., and Thomason, A., Platelet-derived Growth Factor (BB Homodimer), Transforming Growth Factor-r1, and Basic Fibroblast Growth Factor in Dermal Wound Healing. The American Journal of Pathology, 1992. 140(6): p. 1375-1388.
51. Kaltalioglu, K., Coskun-Cevher, S., Tugcu-Demiroz, F., and Celebi, N., PDGF supplementation alters oxidative events in wound healing process: a time course study. Archives of Dermatological Research, 2013. 305(5): p. 415-422.
52. Li, H., Fu, X., Zhang, L., Huang, Q., Wu, Z., and Sun, T., Research of PDGF-BB gel on the wound healing of diabetic rats and its pharmacodynamics. Journal of Surgical Research, 2008. 145(1): p. 41-48.
53. Man, L.-X., Park, J.C., Terry, M.J., Mason, J.M., Burrell, W.A., Liu, F., Kimball, B.Y., Moorji, S.M., Lee, J.A., and Breitbart, A.S., Lentiviral Gene Therapy With Platelet-Derived Growth Factor B Sustains Accelerated Healing of Diabetic Wounds Over Time. Annals of Plastic Surgery, 2005. 55(1): p. 81-86.
54. Jinnin, M., Ihn, H., Mimura, Y., Asano, Y., Yamane, K., and Tamaki, K., Regulation of fibrogenic/fibrolytic genes by platelet-derived growth factor C, a novel growth factor, in human dermal fibroblasts. Journal of Cellular Physiology, 2005. 202(2): p. 510-517.
55. Keswani, S.G., Katz, A.B., Lim, F.Y., Zoltick, P., Radu, A., Alaee, D., and Crombleholme, T.M., Adenoviral mediated gene transfer of PDGF-B enhances wound healing in type I and type II diabetic wounds. Wound Repair and Regeneration, 2004. 12(5): p. 497-512.
56. Zielins, E.R., Brett, E.A., Luan, A., Hu, M.S., Walmsley, G.G., Paik, K., and Wan, D.C., Emerging drugs for the treatment of wound healing. Expert Opinion on Emerging Drugs, 2015. 20(2): p. 235-246.
57. 劉宜旻, Indolicidin 之二聚體形式對輸送去氧寡核苷酸的影響. 國立中央大學 化學工程與材料工程學系 碩士論文, 2018.
58. Collins, M. and Thrasher, A., Gene therapy: progress and predictions. Proceedings of the Royal Society B: Biological Sciences, 2015. 282(1821): p. 20143003-20143011.
59. 胡哲誠, 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維 進行原位轉染. 國立中央大學 化學工程與材料工程學系 碩士論文, 2014.
60. Zhang, Y., Ma, Y., Wu, C., Miron, R.J., and Cheng, X., Platelet-derived growth factor BB gene-released scaffolds: biosynthesis and characterization. Journal of Tissue Engineering and Regenerative Medicine, 2016. 10(10): p. E372-E381.
61. Gonzalez-Fuenzalida, R.A., Moliner-Martinez, Y., Gonzalez-Bejar, M., Molins-Legua, C., Verdu-Andres, J., Perez-Prieto, J., and Campins-Falco, P., In situ colorimetric quantification of silver cations in the presence of silver nanoparticles. Analytical Chemistry, 2013. 85(21): p. 10013-10016.
62. Park, J.-Y., Kyung, K.-H., Tsukada, K., Kim, S.-H., and Shiratori, S., Biodegradable polycaprolactone nanofibres with β-chitosan and calcium carbonate produce a hemostatic effect. Polymer, 2017. 123: p. 194-202.
63. Sumitha, M.S., Shalumon, K.T., Sreeja, V.N., Jayakumar, R., Nair, S.V., and Menon, D., Biocompatible and Antibacterial Nanofibrous Poly(ϵ-caprolactone)-Nanosilver Composite Scaffolds for Tissue Engineering Applications. Journal of Macromolecular Science, Part A, 2012. 49(2): p. 131-138.
64. Khalil, A.K., Fouad, H., Elsarnagawy, T., and Almajhdi, F.N., Preparation and Characterization of Electrospun PLGA/silver Composite Nanofibers for Biomedical Applications. International Journal of Electrochemical Science, 2013. 8(3): p. 3483-3493.
65. Jia, Y., Huang, G., Dong, F., Liu, Q., and Nie, W., Preparation and characterization of electrospun poly(ε-caprolactone)/poly(vinyl pyrrolidone) nanofiber composites containing silver particles. Polymer Composites, 2016. 37(9): p. 2847-2854.
66. Safaeijavan, R., Soleimani, M., Divsalar, A., Eidi, A., and Ardeshirylajimi, A., Biological behavior study of gelatin coated PCL nanofiberous electrospun scaffolds using fibroblasts. Journal of Paramedical Sciences Winter, 2014. 5: p. 67-73.
67. Shkarina, S., Shkarin, R., Weinhardt, V., Melnik, E., Vacun, G., Kluger, P.J., Loza, K., Epple, M., Ivlev, S.I., Baumbach, T., Surmeneva, M.A., and Surmenev, R.A., 3D biodegradable scaffolds of polycaprolactone with silicate-containing hydroxyapatite microparticles for bone tissue engineering: High-resolution tomography and in vitro study. Scientific Reports, 2018. 8(1): p. 8907-8920.
68. Kumar, P.T.S., Abhilash, S., Manzoor, K., Nair, S.V., Tamura, H., and Jayakumar, R., Preparation and characterization of novel β-chitin/nanosilver composite scaffolds for wound dressing applications. Carbohydrate Polymers, 2010. 80(3): p. 761-767.
69. Dubey, P., Bhushan, B., Sachdev, A., Matai, I., Uday Kumar, S., and Gopinath, P., Silver-nanoparticle-Incorporated composite nanofibers for potential wound-dressing applications. Journal of Applied Polymer Science, 2015. 132(35): p. 42473-42485.
70. Xu, Y.J., Zuo, L.G., Qian, X., and Wang, J.Y., Preparation and Characterization of Cellulose-Silver Nanocomposites by in situ Reduction with Alkalis as Activation Reagent. BioResources, 2016. 11(1): p. 2797-2808.
71. Cerkez, I., Sezer, A., and Bhullar, S.K., Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality. Royal Society open science, 2017. 4(2): p. 160911-160919.
72. Liua, S., Zhengc, Z., Wangb, S., Chena, S., Maa, J., Liua, G., Wangb, B., and Li, J., Polydopamine-coated chitosan/calcium pyrophosphate hybrid microflowers as an effective hemostatic agent. Carbohydrate Polymers, 2019: p. 115175-115201.
73. Plonka, A.B., Khorsand, B., Yu, N., Sugai, J.V., Salem, A.K., Giannobile, W.V., and Elangovan, S., Effect of sustained PDGF nonviral gene delivery on repair of tooth-supporting bone defects. Gene Therapy, 2017. 24(1): p. 31-39.
74. Laiva, A.L., O′Brien, F.J., and Keogh, M.B., Innovations in gene and growth factor delivery systems for diabetic wound healing. Journal of Tissue Engineering and Regenerative Medicine, 2018. 12(1): p. e296-e312.
75. Cheng, W., Zhang, Z., Xu, R., Cai, P., Kristensen, P., Chen, M., and Huang, Y., Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2018. 106(7): p. 2588-2595. |