博碩士論文 104324070 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.223.213.174
姓名 言紹榮(SHAO-RONG YAN)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 CZIS與BiVO4之電化學頻譜分析
(Analysis of Electrochemical Impedance Spectroscopy for CZIS and BiVO4)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以電化學阻抗譜(Electrochemical Impedance Spectroscopy)分析光化學於光反應與暗反應之行為,藉由擬合(fitting)以及電路圖了解光電化學反應系統,
以mott-schottky 方程式協助理解光陽極之各項參數。
材料以CIS、CZIS系列與BiVO4為主,分為暗反應與光反應兩種電化學機制,對於暗反應使用Randles cirsuit等效電路模型;對於光反應,經過fitting比較後選用以表面態傳輸電荷為主的等效電路模型。
由暗反應不同偏壓之測量,透過Mott-Schottky方程式繪製Mott-Schottky plot,藉此計算斜率與截距,進而推得實驗材料之平帶電位與載子濃度,配合霍爾測量交叉確認其值。
透過光暗反應之等效電路元件數值,Rct,trap(表面態電荷傳輸界面阻抗)相較於暗反應,其值大幅下降,Rtrapping(表面態再結合阻抗),確認實驗材料於光照下,電子與電洞的再結合率很低,且Rct的下降反映了電洞更易與電解液接觸且進行電荷傳遞、產生氧氣。
電荷傳輸阻抗、表面態電容變化曲線圖配合Mott-Schottky plot之平帶電位,表明當偏壓在平帶電位附近時,表面態有大量電荷累積而電容達到最大值,電荷不易擺脫電場束縛進行傳遞,表面態電荷轉移阻抗也達到最高;而加大偏壓後,電洞較易於抵達電解液而與界面上之陰離子結合且產氧,因此電荷累積情形下降,表面態電容與電荷轉移阻抗也對應下降。
摘要(英) In this study, we analyzed the photochemical behavior of light and dark reaction on Electrochemical Impedance Spectroscopy, by fitting (fitting) and circuit diagram to understand photoelectric chemical reaction system.
The mott-schottky equation was used to understand the parameters of photoanode.The materials are mainly CIS, CZIS series and BiVO4, which are divided into two electrochemical mechanisms: dark reaction and light reaction. Randles cirsuit equivalent circuit model is used for dark reaction.
For the light reaction, an equivalent circuit model dominated by surface state transfer charge is selected after the comparison of fitting.
Mott-schottky plot was plotted by using Mott-schottky equation to calculate slope and intercept, and then the horizontal band potential and carrier concentration of the experimental materials were obtained, and the values were cross-confirmed by hall measurement.
By Observing equivalent circuit element of light and dark reation, Rct,trap (surface charge transfer impedance interface) value has fallen dramatically which compared with dark reaction.
Confirmed that the recombination rate of electrons and holes is very low under illumination. The trop of Rct reflects the holes are more likely to be in contact with the electrolyte, and transfers charge, then produces oxygen.
The curve of charge transfer impedance and surface state capacitance change, combined with the flat band potential of mott-schottky plot, indicated that when the bias voltage was near the flat band potential, the surface state had a large amount of charge accumulation and the capacitance reached the maximum value, the charge was not easy to be transferred from the electric field, and the surface state charge transfer impedance also reached the highest level.
However, when the bias voltage is increased, the hole is easier to reach the electrolyte and combine with the anions on the interface to produce oxygen, so the charge accumulation situation decreases, and the surface state capacitance and charge transfer impedance also decrease correspondingly.
關鍵字(中) ★ 阻抗頻譜
★ 擬合
★ 電路模型
關鍵字(英) ★ Impedance spectroscopt
★ fitting
★ circuit model
論文目次 目錄

中文摘要 i
ABSTRACT ii
誌謝 iii
目錄 v
圖目錄 vii
Chapter 1 緒論 1
1.1 前言 1
1.2 太陽能 3
1.3 光觸媒半導體與光催化機制 3
1.4 光觸媒分類 5
1.5 EIS (Electrochemical Impedance Spectroscopy) 簡介 6
1.6 研究動機 7
Chapter 2 文獻回顧 9
2.1 能帶理論 9
2.2 光觸媒半導體 11
2.3 半導體與電解液之界面 13
2.4 噴霧熱裂解法(Spray Pyrolysis) 15
2.5 電化學交流阻抗頻譜 (Electrochemical Impedance Spectroscopy,EIS) 16
2.5.1 EIS基礎理論與分析 16
2.5.2 Nyquist圖與波氏圖 18
2.5.3 等效電路模型與元件 20
2.5.4 EIS簡單電路 27
2.5.5 EIS電路模型 31
Chapter 3 研究方法 39
3.1 實驗藥品 39
3.2 實驗儀器 39
3.3 光電化學薄膜製備與測量 40
3.4 電化學阻抗頻譜(Electrochemistry Impedance Spectroscopy,EIS) 41
3.5 霍爾量測 (Hall Effect Measurement) 42
Chapter 4 結果與討論 43
4.1 CIS之電化學阻抗頻譜分析 43
4.1.1 CIS暗反應 43
4.1.2 CIS光反應 48
4.2 CZIS之電化學阻抗頻譜分析 51
4.2.1 CZIS暗反應 51
4.2.2 CZIS光反應 74
4.3 BiVO4之電化學阻抗頻譜分析 95
Chapter 5 結論 102
參考文獻 [1] 陳麗貞. 第三十三期電子月刊 取之不盡用之不竭的太陽能httpsrecord.epa.gov.twEpaper099333-3.html
[2] K.Fujishima, A., & Honda, “Electrochemical Photolysis of Water One and Two-dimensional Structure of Poly ( L-Alanine ) shown by Specific Heat Measurements at Low,” Nature, vol. 238, pp. 37–38, 1972.
[3] K. R.Tolod, S.Hernández, E. A.Quadrelli, andN.Russo, “Visible Light-Driven Catalysts for Water Oxidation: Towards Solar Fuel Biorefineries,” Stud. Surf. Sci. Catal., vol. 178, pp. 65–84, 2019.
[4] S. N.Basahel, T. T.Ali, M.Mokhtar, andK.Narasimharao, “Influence of crystal structure of nanosized ZrO2 on photocatalytic degradation of methyl orange,” Nanoscale Res. Lett., vol. 10, no. 1, 2015.
[5] G.Elango andS. M.Roopan, “Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye,” J. Photochem. Photobiol. B Biol., vol. 155, pp. 34–38, 2016.
[6] X.Chen, Z.Wu, D.Liu, andZ.Gao, “Preparation of ZnO Photocatalyst for the Efficient and Rapid Photocatalytic Degradation of Azo Dyes,” Nanoscale Res. Lett., vol. 12, no. 1, pp. 4–13, 2017.
[7] W.Jiang, Z.Wu, X.Yue, S.Yuan, H.Lu, andB.Liang, “Photocatalytic performance of Ag 2 S under irradiation with visible and near-infrared light and its mechanism of degradation,” RSC Adv., vol. 5, no. 31, pp. 24064–24071, 2015.
[8] W.Gao et al., “In 2 S 3 nanomaterial as a broadband spectrum photocatalyst to display significant activity,” Appl. Catal. B Environ., vol. 176–177, pp. 83–90, 2015.
[9] E. S.Aazam, “Photocatalytic oxidation of cyanide under visible light by Pt doped AgInS2 nanoparticles,” J. Ind. Eng. Chem., vol. 20, no. 6, pp. 4008–4013, 2014.
[10] D.Chen andJ.Ye, “Photocatalytic H2 evolution under visible light irradiation on AgIn5S8 photocatalyst,” J. Phys. Chem. Solids, vol. 68, no. 12, pp. 2317–2320, 2007.
[11] G.Wang et al., “Cu2(OH)PO4, a near-infrared-activated photocatalyst,” Angew. Chemie - Int. Ed., vol. 52, no. 18, pp. 4810–4813, 2013.
[12] 吳錦貞,「I-III-VI/II-VI 族可見光應答光觸媒材料之光電化學分析與水分解產氫應用」,國立中正大學,博士論文,2009。
[13] A.Nylander, “Fabrication and reliability study of thermoelectric modules,” 2015.
[14] K.Rajeshwar, “Fundamentals of semiconductor electrochemistry and photoelectrochemistry,” Encycl. Electrochem., vol. 6, pp. 3–53, 2001.
[15] R. R.Chamberlin and J. S.Skarman, “Chemical Spray Deposition Process for Inorganic Films,” no. 1, pp. 86–89,1966
[16] F.Lisdat andD.Schäfer, “The use of electrochemical impedance spectroscopy for biosensing,” Anal. Bioanal. Chem., vol. 391, no. 5, pp. 1555–1567, 2008.
[17] D.Loveday, D.Loveday, P.Peterson, P.Peterson, B.Rodgers, andB.Rodgers, “Evaluation of organic coatings with electrochemical impedance spectroscopy. Part 2: application of EIS to coatings,” J. Coatings Technol., vol. 1, no. 10, pp. 88–93, 2004.
[18] T.Lopes, L.Andrade, H. A.Ribeiro, andA.Mendes, “Characterization of photoelectrochemical cells for water splitting by electrochemical impedance spectroscopy,” Int. J. Hydrogen Energy, vol. 35, no. 20, pp. 11601–11608, 2010.
[19] J.Ângelo, P.Magalhães, L.Andrade, andA.Mendes, “Characterization of TiO 2 -based semiconductors for photocatalysis by electrochemical impedance spectroscopy,” Appl. Surf. Sci., vol. 387, pp. 183–189, 2016.
[20] M. H.Habibi, N.Talebian, andJ. H.Choi, “Characterization and photocatalytic activity of nanostructured indium tin oxide thin-film electrode for azo-dye degradation,” Thin Solid Films, vol. 515, no. 4, pp. 1461–1469, 2006.
[21] S.States, B.Klahr, F.Fabregat-santiago, andT. W.Hamann, “Water Oxidation at Hematite Photoelectrodes : The role of the Surface States,” J. Am. Chem. Soc., vol. 134, no. October 2016, pp. 4294–4302, 2012.
[22] Bard, A. J.; Stratmann, M.; Licht, S., Semiconductor Electrodes and Photoelectrochemistry. Wiley-VCH: Weinheim, 2002.
[23] J. G. Webster, “Electrical Impedance Tomography”, Adam Hilger,Bristol, 1990.
[24] Simple circuits with resistors and capacitors,http://lacey.se/science/eis/simple-circuits/
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2019-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明