博碩士論文 102283602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.15.220.29
姓名 Venkatesan(Govindan)  查詢紙本館藏   畢業系所 化學學系
論文名稱 柯維丹
(Venkatesan Govindan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
本篇論文研究合成有機小分子應用在反式有機太陽能電池中作為
donor,在反式鈣鈦礦太陽能電池中作為電洞傳遞層材料,以及在一般式鈣
鈦礦太陽能電池中作為電子傳遞層材料,並探討這些材料分子的物化性質、
結構與材料性質的關係及材料組裝成元件後的光伏表現。
第一部分研究以diketopyrrolopyrrole (DPP) 作為acceptor ,
ethylenedioxythiophene (EDOT) 、triphenylamine (TPA) 、alkyl thiophene
(AT) 作為donor , 利用direct alkylation 合成donor–donor–acceptor–donor–
donor (D1–D2–A–D2–D1)類型的四個小分子(SM1, SM2, SM3, SM4),以及
利用Stille coupling合成acceptor–donor–acceptor (A–D–A)類型的兩個小分子
(SM5, SM6),作為donor應用在反式有機太陽能電池中(PCBM為acceptor,
ZnO為電子傳遞層,MoO3為電洞傳遞層),因SM2有最低的HOMO能階,
因此以SM2作為donor所組裝之元件有最高的VOC值,為0.82V。SM5和SM6
為結構異構物,但由於SM6和SM5相比有較好的溶解度和較低的HOMO能
階,因此以SM6所組裝的元件有較好的光電轉換效率。第二部份研究合成雜環 spiro-typed 的分子做為電洞傳遞層材料,分
別以spiro[fluorene-9,9’-xanthene] (SFX) 和spiro[fluorene-9,9’-thioxanthene]
(SFT)為結構核心合成產率高成本低的SFX-TPAM、SFX-TPA、SFT-TPAM、
SFT-TPA等四個化合物。以這四個小分子作為電洞傳遞層(HTL)應用在元
件中,元件架構為glass/ITO/HTL/CH3NH3PbI3/ C60/BCP/Ag。其中以SFXTPAM
作為HTL , 在不添加dopant 的條件下所組裝的元件和以spiro-
OMeTAD作為電洞傳遞層所組裝的元件相比,有較好的光電轉換效率,為
10.23% 。第三部份的研究則包含三個以fullerene (C60及C70)為結構核心,bis(2-
(2-((tert-butoxycarbonyl)amino)ethoxy)ethyl) malonate (4b)作為取代基,合成
三個電子傳遞層修飾材料(C60-RT2、C60-RT6及C70-RT2)應用在一般式鈣鈦
礦太陽能電池元件中。這三個材料對極性質子溶劑(甲醇、乙醇及水)有很
好的溶解度,在一般式太陽能電池元件的製程中,混在TiO2漿料中使用,
可以製作低溫TiO2。以TiO2+C60-RT2、TiO2+C60-RT6、TiO2+C70-RT6作為
電子傳遞層所組裝之元件光電轉換效率分別為16.37%、18.03%及17.10%,
較以TiO2作為電子傳遞層所組裝之元件效率(14.92%)來得高。
摘要(英) Abstract
This thesis is the work on the organic semiconductors for applications as
electron donor (p-type) materials in organic solar cells (OSCs), hole transporting
materials (HTMs) in inverted perovskite solar cells (p-i-n PSCs) and electron
transporting materials (ETMs) in regular perovskite solar cells (n-i-p PSCs). The
synthesis and physicochemical characterization of new materials (P-type, HTMs
and ETMs) were reported. The structure-property relationship and the
photovoltaic performance of the corresponding cells were investigated.
The first part focuses on synthesis of four donor–donor–acceptor–donor–
donor (D1–D2–A–D2–D1) type small molecules (SM1, SM2, SM3 and SM4),
in which diketopyrrolopyrrole (DPP) was used as an acceptor (DPP) core and
3,4-ethylenedioxythiophene (EDOT), triphenylamine (TPA) or alkyl thiophene
(AT) acted as a donor using direct arylation reaction. The inverted small
molecule solar cell (using PCBM as an acceptor, and ZnO and MoO3 as the
electron and hole transporters, respectively) based on SM2 has the highest value
of Voc (0.82 V) due to SM2 having the lowest HOMO level. Two acceptor–
donor–acceptor type (A–D–A) molecules (SM5 and SM6) were also synthesized
by Stille coupling, in which DPP and EDOT were used as the acceptor and
donor, respectively. SM5 and SM6 are structural isomers, however the inverted
cell based on SM6 has a much higher PCE than that based on SM5, due to SM6
having better solubility and a lower HOMO energy level.
The second part targets on four heterocyclic spiro-typed hole transporting
materials (HTMs) carrying spiro[fluorene-9,9’-xanthene] (SFX) such as SFXTPAM
and SFX-TPA or spiro[fluorene-9,9’-thioxanthene] (SFT) unit such as
SFT-TPAM and SFT-TPA were synthesized through low cost facile route with
high yields. The photovoltaic performance of the inverted PSCs based on these
small molecular hole transporting materials with the device architecture of
glass/ITO/HTM/CH3NH3PbI3/C60/BCP/Ag was studied. Inverted PSC based on
dopant-free SFX-TPAM HTM achieves a power conversion efficiency of10.23% under the illumination of standard one Sun lighting, which is better than
that (8.17%) of the cell based on dopant-free spiro-OMeTAD.
The third part is the preparation and photovoltaic application of three
fullerene based ETMs (C60-RT2, C60-RT6 and C70-RT2), in which fullerene (C60
and C70) as core unit and bis(2-(2-((tert-butoxycarbonyl)amino)ethoxy)ethyl)
malonate (4b) was used as a substituent. All three fullerene exhibit very good
solubility in polar protic solvents (such as methanol, ethanol and water), which
is beneficial for making of low temperature processed ETMs for regular PSCs.
The new fullerene derivatives were mixed with low temperature processed TiO2
to be used as ETMs in regular PSCs (FTO/ETMs/PSK/Spiro-
OMeTAD/MoO3/Ag). Cells based on new ETMs have the PCE of 16.37%
(TiO2+C60-RT2), 18.03% (TiO2+C60-RT6) and 17.10% (TiO2+C60-RT6), which
is higher than that (14.92%) of the cell based on TiO2 ETL. The work of this
thesis provides valuable guideline for designing charge transporting materials
for photovoltaic application.
關鍵字(中) ★ Organic molecules
★ Hole transporting materials
★ Electronic transporting materials
★ Perovskite solar cells
關鍵字(英)
論文目次 Chinese Abstract i
English Abstract iii
Acknowledgements v
Table of the contents .vi
List of Figures .ix
List of Tables.xii
List of Schemes .xiii
Explanation of symbols .xiv
Chapter one: Introduction .1
1-1 Background 1
1-2 Photovoltaics 1
1-3 Organic solar cells (OSCs) .3
1-3-1 Device architecture .3
1-3-2 Working mechanism of OSCs.5
1-3-3 Photovoltaic characteristics.7
1-3-4 High performance donor small molecule .8
1-3-5 Acceptor materials 10
1-3-6 Diketopyrrolo[3,4-c]pyrrolopyrrole (DPP) based donor materials for OSCs. 11
1-4 Perovskite solar cells (PSCs)15
1-4-1 Device architecture and working mechanism of perovskite solar cells 16
1-4-2 Hole transporting materials for inverted PSCs19
1-4-3 Spiro-type hole transporting materials for inverted PSCs.19
1-4-4 Electron transporting materials .22
1-4-5 Fullerene based electron transporting materials for regular PSCs 22
1-5 Objective of this thesis34
Chapter Two: Facile synthesis of low band-gap DPP–EDOT containing small molecules for solar cell applications.38
2-1 Synthesis and characterizations of the small molecule SM1-SM6.38
2-2 Optical properties44
2-3 Electrochemical properties. 47
2-4 Small molecules in inverted heterojunction device .50
2-5 Conclusion 53
2-6 Experimental section 54
2-6-1 Synthesis of DPP based small molecule (SM1-SM6).54
2-6-2 Physicochemical studies69
2-6-3 Device fabrication and characterization70
Chapter Three: Heterocyclic spiro-type hole transporting materials for perovskite solar cell applications73
3-1 Synthesis and characterization of HTMs .73
3-2 Optical properties75
3-3 Electrochemical properties. 79
3-4 Photovoltaic performance.82
3-5 Conclusion 87
3-6 Experimental section 88
3-6-1 Synthesis of Spiro-type hole transporting materials (SFX-TPAM, SFX-TPA, SFT-TPAM and SFT-TPA).88
3-6-2 Physicochemical studies 96
3-6-3 Device fabrication and characterization 98
Chapter Four: Synthesis of fullerene based electron transporting materials for perovskite solar cell applications .100
4-1 Synthesis and characterization of Fullerene ETMs 100
4-2 Optical properties 105
4-3 Electrochemical properties .106
4-4 Photovoltaic performance.109
4-5 Conclusion 118
4-6 Experimental section 119
4-6-1 Synthesis of fullerene based electron transporting materials(C60-RT1, C60-RT2, C60-RT6 and C70-RT2).119
4-6-2 Physicochemical studies125
4-6-3 Device fabrication and characterization126
Chapter Five: Conclusions .128
Future Work .130
Reference 133
參考文獻 Reference
[1] Epstein, P. R.; Buonocore, J. J.; Eckerle, K.; Hendryx, M.; Stout III, B.
M.; Heinberg, R.; Clapp, R. W.; May, B.; Reinhart, N. L.; Ahern, M. M.;
Doshi, S. K.; Glustrom, L. Full cost accounting for the life cycle of coal in
“Ecological Economics Reviews. Ann. N.Y. Acad. Sci. 2011, 1219, 73-98.
[2] Jean, J.; Brown, P. R.; Jaffe, R. L.; Buonassisi, T.; Bulovic, V. “Pathways
for solar photovoltaics”. Energy Environ. Sci. 2015, 8, 1200-1219.
[3] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W. Dunlop, E. D.
Progress in Photovoltaics: Research and Applications 2016, 24, 905-913.
[4] Boyle. G. Renewable Energy, Power for a sustainable future, 2nd ed.
Oxford, UK: Oxford University Press, 2004.
[5] Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D.;
Progress in Photovoltaics: Research and Applications 2011, 22, 1-9.
[6] Collier, J; Wu, S.; Apul, D. “Life cycle environmental impacts from
CZTS (copper zinc tin sulfide) and Zn3P2 (zinc phosphide) thin film PV
(photovoltaic) cells”. Energy 2014, 74, 314-321.
[7] Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T.-Y.; Lee, Y. G.; Kim, G.; Shin,
H.-W.; Seok, S. I.; Lee, J.; Seo, J. “A fluorene-terminated holetransporting
material for highly efficient and stable perovskite solar
cells”. Nat. Energy 2018, 3, 682-689.
[8] Gordon J. H.; Ruseckas, A.; Ifor D.; Samuel, W. “Light harvesting for
organic photovoltaics”. Chem. Rev. 2017, 117, 796−837.
[9] Tang, C. W. “Two-layer organic photovoltaic cell”. Appl. Phys. Lett.
1986, 48, 183−185.
[10] Sariciftci, N. S.; Smilowitz, L.; Heeger, A. J.; Wudl, F. “Photoinduced
electron transfer from a conducting polymer to buckminsterfullerene”.
Science 1992, 258, 1474-1476.
134
[11] Kraabel, B.; Lee, C. H.; McBranch, D.; Moses, D.; Sariciftci, N. S.;
Heeger, A. J. “Ultrafast photoinduced electron transfer in conducting
polymer/buckminsterfullerene composites”. Chem. Phys. Lett., 1993, 213,
389-394.
[12] Halls, J. J. M.; Walsh, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend,
R. H.; Moratti, S. C.; Holmes, A. B. “Efficient photodiodes from
interpenetrating polymer networks”. Nature 1995, 376, 498-500.
[13] Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. “Polymer
photovoltaic cells: enhanced efficiencies via a network of internal donoracceptor
heterojunctions”. Science 1995, 270, 1789-1791.
[14] Sze, S. M.; Ng, K.K. “Physics of Semiconductor Devices”. 3rd ed. Wiley
Interscience, 2006.
[15] Gupta, V.; Kyaw, A. K. K.; Wang, D. H.; Chand, S.; Bazan, G.C.;
Heeger, A. J. “Barium: an efficient cathode layer for bulk-heterojunction
solar cells”. Sci. Reports 2013, 3. 1965.
[16] Zhou, J.; Wan, X; Liu, Y.; Zuo, Y.; Li, Z.; He, G. “Small molecules based
on benzo[1,2-b:4,5-b’]dithiophene unit for high-performance solutionprocessed
organic solar cells”. J. Am. Chem. Soc., 2012, 134, 16345-51.
[17] Ni, W.; Li, M.; Wan, X.; Feng, H.; Kan, B.; Zuo, Y. “A high-performance
photovoltaic small molecule developed by modifying the chemical
structure and optimizing the morphology of the active layer”. RSC Adv.,
2014, 4, 31977-31980.
[18] Kumar, C.V.; Cabau, L.; Koukaras, E. N.; Sharma, G. D.; Palomares, E.
“Efficient solution processed D1-A-D2-A-D1 small molecules bulk
heterojunction solar cells based on alkoxy triphenylamine and benzo[1,2-
b:4,5-b′]thiophene units”. Org. Electron. 2015, 26, 36-47.
[19] Lin, Y.; Wang, J.; Li, T.; Wu, Y.; Wang, C.; Han, L.; Yao, Y.; Ma, W.;
Zhan, X. “Efficient fullerene-free organic solar cells based on fused ring
oligomer molecules”. J. Mater. Chem. A 2016, 4, 1486-1494.
135
[20] Song, B.; Forrest, S. R. “Nanoscale control of morphology in fullerenebased
electron-conducting buffers via organic vapor phase deposition”.
Nano Lett. 2016, 16, 3905-3910.
[21] Wang, M.; Hu, X.; Liu, P.; Li, W.; Gong, X.; Huang, F.; Cao, Y. “Donoracceptor
conjugated polymer based on naphtho[1,2-c:5,6-
c]bis[1,2,5]thiadiazole for high-performance polymer solar cells”. J. Am.
Chem. Soc. 2011, 133, 9638−9641.
[22] Zhao, J.; Li, Y.; Yang, G.; Jiang, K.; Lin, H.; Ade, H,; Ma, W.; Yan, H.
“Efficient organic solar cells processed from hydrocarbon solvents”. Nat.
Energy 2016, 1, 15027.
[23] Anthony, J. E. “Small-molecule, nonfullerene acceptors for polymer bulk
heterojunction organic photovoltaics”. Chem. Mater. 2011, 23, 583-590.
[24] Cheqi, Y.; Stephen, B.; Zhaohui, W.; He, Y.; Alex, K. Y.; Jen, S.;
Marder, R.; Xiaowei, Z. “Non-fullerene acceptors for organic solar
cells”. Nature Reviews Materials 2018, 3, 18003.
[25] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.;
Kastler, M.; Facchetti, A. “A high-mobility electron-transporting
polymer for printed transistors”. Nature 2009, 457, 679-686.
[26] Meng, L.; Zhang, Y.; Wan, X.; Li, C.; Zhang, X.; Wang, Y.; Ke, X.; Xiao,
Z.; Ding, L.; Xia, R. “Organic and solution-processed tandem solar cells
with 17.3% efficiency”. Science 2018, 361, 1094-1098.
[27] Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.;
Kastler, M.; Facchetti, A. “A high-mobility electron-transporting
polymer for printed transistors”. Nature 2009, 457, 679-686.
[28] Farnum, D. G.; Mehta, G.; Moore, G. G. I.; Siegel, F. P. “Attempted
reformatskii reaction of benzonitrile, 1,4-diketo-3,6-diphenylpyrrolo[3,4-
C]pyrrole. A lactam analogue of pentalene”. Tetrahedron Lett. 1974, 29,
2549-2552.
136
[29] Iqbal, A.; Cassar, L. “Process for dyeing high-molecular organic material,
and novel polycyclic pigments”. U. S. Pat. 1983, 4, 415, 685.
[30] Rochat, A. C.; Cassar, L.; Iqbal, A. “Novel diketopyrrolopyrrole
pigments”. EP, 1983, 94911.
[31] Tamayo, A. B.; Dang, X. D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T. Q.
“A low band gap, solution processable oligothiophene with a dialkylated
diketopyrrolopyrrole chromophore for use in bulk heterojunction solar
cells”. Appl. Phys. Lett. 2009, 94, 103301.
[32] Walker, B.; Tamayo, A. B.; Dang, X. D.; Zalar, P.; Seo, J. H.; Garcia, A.;
Tantiwiwat, M.; Nguyen, T. Q. “Nanoscale phase separation and high
photovoltaic efficiency in solution‐processed, small‐molecule bulk
heterojunction solar cells”. Adv. Funct. Mater. 2009, 19, 3063.
[33] Lee, O. P.; Yiu, A. T.; Beaujuge, P. M.; Woo, C. H.; Holcombe, T. W.;
Millstone, J. E.; Douglas, J. D.; Chen, M. S.; Fre´chet, J. M. J. “Efficient
small molecule bulk heterojunction solar cells with high fill factors via
pyrene‐directed molecular self‐assembly”. Adv. Mater. 2011, 23, 5359.
[34] Cuesta, V.; Singhal, R.; Cruz, P.; Ganesh, D. S.; Langa, F. “Near-IR
absorbing D-A-D Zn-porphyrin-based small-molecule donors for organic
solar cells with low-voltage loss”. ACS App. Mater. Interfaces 2019, 11,
7216-7225.
[35] Choi, Y. S.; Jo, W. H. “A strategy to enhance both VOC and JSC of A–D–A
type small molecules based on diketopyrrolopyrrole for high efficient
organic solar cells”. Organic Electronics. 2013, 14, 1621-1628.
[36] Loser, S.; Miyauchi, H.; Hennek, J. W.; Smith, J.; Huang, C.; Facchetti,
A.; Marks, T. J. “A “zig-zag” naphthodithiophene core for increased
efficiency in solution-processed small molecule solar cells”. Chem.
Commun. 2012, 48, 8511-8513.
[37] Gao, K.; Li, L.; Lai, T.; Xiao, L.; Huang, Y.; Huang, F.; Peng, J.; Cao,
Y.; Liu, F.; Russell, T. P. “Deep absorbing porphyrin small molecule for
137
high-performance organic solar cells with very low energy losses”. J. Am.
Chem. Soc. 2015, 137, 7282.
[38] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. “Organometal halide
perovskites as visible-light sensitizers for photovoltaic cells”. J. Am.
Chem. Soc. 2009, 131, 6050-6051.
[39] Wenk, H. R.; Andrei, B. “Minerals: Their Consitiution and Origin”. New
York: Cambridge University press. 2004, 413, ISBN. 978-0-521-52958-7.
[40] Liu, S. H.; Wang, L.; Lin, W. C.; Sucharitakul, S.; Burda, C.; Gao, Xuan
P. A. “Imaging the long transport lengths of photo-generated carriers in
oriented perovskite films”. Nano Letters 2016, 16, 12, 7925–7929.
[41] Chin, H. T.; Rusli D.; Eng L. L.; Chi C. Y.; Mohd, A. I.; Norasikin, A. L.;
Kamaruzzaman, S.; Mohd, M. T. “A review of organic small moleculebased
holetransporting materials for meso-structured organic–inorganic
perovskite solar cells”. J. Mater. Chem. A 2016, 4, 15788-15822.
[42] Mauch, R. H.; Gumlich, H. E.; Wissenschaft, Verlag, E. “Inorganic and
organic electroluminescence”. EL96, 1996, 243.
[43] Pudzich, R.; Fuhrmann-Lieker, T.; Salbeck. J. “Spiro compounds for
organic electroluminescence and related applications”. Adv. Polym. Sci.
2006, 199, 83-142.
[44] Saliba, M.; Matsui, T.; Seo, J. Y.; Domanski, K.; Baena, J. P.;
Nazeeruddin, M. K.; Zakeeruddin, S. M.; Tress, W.; Abate, A.; Hagfeldt,
A.; Gra¨tzel, M. “Cesium-containing triple cation perovskite solar cells:
improved stability, reproducibility and high efficiency”. Energy Environ.
Sci. 2016, 9, 1989-1997.
[45] Hu, Z.; Fu, W.; Yan, L.; Miao, J.; Yu, H.; He, Y.; Goto, O.; Meng, H.;
Chen, H. Z.; Huang, W. “Effects of heteroatom substitution in
spirobifluorene hole transport materials”. Chem. Sci. 2016, 7, 5007-5012.
138
[46] Bi, D.; Xu, B.; Gao, P.; Sun, L.; Grätzel, M.; Hagfeldt, A. “Facile
synthesized organic hole transporting material for perovskite solar cell
with efficiency of 19.8%”. Nano Energy 2016, 23, 138-144.
[47] Xu, B.; Bi, D.; Hua, Y.; Liu, P.; Cheng, M.; Gratzel, M.; Kloo, L.;
Hagfeldt, A.; Sun, L. “A low-cost spiro[fluorene-9,9′-xanthene]-based
hole transport material for highly efficient solid-state dye-sensitized solar
cells and perovskite solar cells”. Energy Environ. Sci. 2016, 9, 873-877.
[48] Popov, A. A.; Yang, S. F.; Dunsch, L. “Endohedral fullerenes”. Chem.
Rev. 2013, 113, 5989-6113.
[49] Kratschmer, L. D.; Lamb, K.; Huffman, D. R. “A solid C60: a new form of
carbon”. Nature 1990, 347, 354-357.
[50] Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smally, R. E. “C60:
Buckminsterfullerene”. Nature 1985, 318, 162-163.
[51] Hirsch, A.; Brettreich, M.; “Fullerenes: chemistry and reactions”. 2005,
DOI:10.1002/3527603492.
[52] Ruoff, R. S.; Tse, Doris, S.; Malhotra, R.; Lorents, D.C. “Solubility of
fullerene (C60) in a Variety of Solvents”. J. Phys. Chem. 1993, 97, 3379-
3383.
[53] Hummelen, J.C.; Knight, B. W.; Peq, F. L.; Wudl, F.; Yao, J.; Wilkins,
C.L. “Preparation and characterization of fulleroid and methanofullerene
derivatives”. J. Org. Chem. 1995, 60, 3, 532-538.
[54] Bingel, C. “Cyclopropanierung von Fullerenen”. Chemische
Berichte. 1993, 126, 8, 1957.
[55] Ricardo K. M.; Bouwer, J. C.; Hummelen, “The use of tethered addends
to decrease the number of isomers of bisadduct analogues of PCBM”.
Chem. Eur. J. 2010, 16, 11250-11253.
[56] Kim, K. H.; Kang, H.; Nam, S. Y.; Jung, J.; Kim, P. S.; Cho, H.; Lee, C.;
Yoon, S.C.; Kim, B. J. “Facile synthesis of o-xylenyl fullerene
139
multiadducts for high open circuit voltage and efficient polymer polar
cells”. Chem. Mater. 2011, 23, 5090-5095.
[57] Yan, W.; Seifermann, S. M.; Pierratd, P.; Bräse, S. “Synthesis of highly
functionalized C60 fullerene derivatives and their applications in material
and life sciences”. Org. Biomol. Chem. 2015, 13, 25-54.
[58] Tan, H.; Jain, A.; Voznyy, O.; Lan, X.; García de Arquer, F. P.; Fan, J. Z.;
Quintero-Bermudez, R.; Yuan, M.; Zhang, B.; Zhao, Y. “Efficient and
stable solution-processed planar perovskite solar cells via contact
passivation”. Science 2017, 355, 6326, 722-726.
[59] Jiang, Q.; Zhang, L.; Wang, H.; Yang, X.; Meng, J.; Liu, H.; Yin, Z.; Wu,
J.; Zhang, X.; You, J. “Enhanced electron extraction using SnO2 for highefficiency
planar-structure HC(NH2)2PbI3-based perovskite solar cells”.
Nat. Energy 2017, 2, 16177.
[60] Cao, J.; Wu, B.; Chen, R.; Wu, Y.; Hui, Y.; Mao, B. W.; Zheng, N.
“Efficient, hysteresis-free, and stable perovskite solar cells with ZnO as
electron-transport layer: effect of surface passivation”. Adv. Mater. 2018,
30, 11, 1705596.
[61] Yang, Z.; Dou, J. J.; Wang, M. Q. “Interface engineering in n-i-p metal
halide perovskite solar cells”. Sol. RRL. 2018, 1800177.
[62] Abrusci, A.; Stranks, S. D.; Docampo, P.; Yip, H. L.; Jen, A. K.; Snaith,
H. J. “High-performance perovskite-polymer hybrid solar cells via
electronic coupling with fullerene monolayers”. Nano Lett. 2013, 13,
3124.
[63] Wojciechowski, K.; Stranks, S. D.; Abate, A.; Sadoughi, G.; Sadhanala,
A.; Kopidakis, N.; Rumbles, G.; Li, C.Z.; Friend, R. H.; Jen, A. K. Y.;
Snaith, H. J. “Heterojunction modification for highly efficient organic–
inorganic perovskite solar cells”. ACS Nano 2014, 8, 12701-12709.
[64] Guo, X.; Juan, B. Z.; Lin, Z.; Ma, J.; Su, J.; Zhu, W.; Zhang, C.; Zhang,
J.; Chang, J. J.; Hao, Y. “Interface engineering of TiO2/perovskite
140
interface via fullerene derivatives for high performance planar perovskite
solar cells”. Organic electronics 2018, 62, 459-467.
[65] Cao, T.; Wang, Z.; Xia, Y.; Song, B.; Zhou, Y.; Chen, N.; Li, Y. F.
“Facilitating electron transportation in perovskite solar cells via watersoluble
fullerenol interlayers”. ACS Appl. Mater. Interfaces 2016, 8,
18284- 18291.
[66] Dong, Y.; Li, W.; Zhang, X.; Xu, Q.; Liu, Q.; Li, C.; Bo, Z. “Highly
efficient planar perovskite solar cells via interfacial modification with
fullerene derivatives”. Small 2016, 12, 1098-1104.
[67] Liu, C.; Wang, K.; Du, P.; Meng, T.; Yu, X.; Cheng, S. Z.; Gong, X.
“High performance planar heterojunction perovskite solar cells with
fullerene derivatives as the electron transport layer”. ACS Appl. Mater.
Interfaces 2015, 7, 1153-1159.
[68] Cai, F.; Yang, L.; Yan, Y.; Zhang, J.; Qin, F.; Liu, D.; Bing, Y.; Zhou, Y.;
Wang, T. “Eliminated hysteresis and stabilized power output over 20% in
planar heterojunction perovskite solar cells by compositional and surface
modifications to the low-temperature-processed TiO2 layer”. J. Mater.
Chem. A 2017, 5, 9402-9411.
[69] Wang, H,; Cai, F.; Zhang, M.; Wang, P.; Yao, J.; Gurney, R. S.; Li, F.;
Liu, D.; Wang, T. “Halogen-substituted fullerene derivatives for interface
engineering of perovskite solar cells”. J. Mater. Chem. A 2018, 6, 21368-
1378.
[70] Wang, P.; Cai, F.; Yang, L.; Yan, Y.; Cai, J.; Wang, H.; Gurney, R. S.;
Liu, D.; Wang, T. “Eliminating light-soaking instability in planar
heterojunction perovskite solar cells by interfacial modifications”. ACS
Appl. Mater. Interfaces 2018, 10, 33144-33152.
[71] Kang, T.; Tsai, C.-M.; Jiang, Y.-H.; Gollavelli, G.; Mohanta, N.; Diau, E.
W.-G.; Hsu, C.-S. “Interfacial engineering with cross-linkable fullerene
141
derivatives for high-performance perovskite solar cells”. ACS Appl.
Mater. Interfaces 2017, 9, 38530-38536.
[72] Zhou, Y.; Wu, B.; Lin, G.; Li, Y.; Chen, D.; Zhang, P.; Yu, M.; Zhang,
B.; Yun, D. “Enhancing performance and uniformity of perovskite solar
cells via a solution-processed C70 interlayer for interface engineering”.
ACS Appl. Mater. Interfaces 2017, 9, 33810-33818.
[73] Zhou, Y. Q.; Wu, B. S.; Lin, G.H.; Xing, Z.; Li, S. H.; Deng, L. L.; Chen,
D. C.; Yun, D.Q.; Xie, S.Y. “Interfacing pristine C60 onto TiO2 for viable
flexibility in perovskite solar cells by a low-temperature all-solution
Process”. Adv. Energy Mater. 2018, 8, 1800399.
[74] Li, C.-Z.; Chueh, C.-C.; Yip, H.-L.; Ding, F.; Li, X.; Jen, A. K.- Y.
“Solution-processible highly conducting fullerenes”. Adv. Mater. 2013,
25, 2457-2461.
[75] Saha, S. “Anion-induced electron transfer”. Acc. Chem. Res., 2018, 51,
2225-2236.
[76] Bradley, C.; Lonergan, C, L. “Limits on anion reduction in an ionically
functionalized fullerene by cyclic voltammetry with in situ conductivity
and absorbance spectroscopy”. J. Mater. Chem. A 2016, 4, 8777–8783.
[77] Li, C. Z.; Chueh, C. C.; Ding, F. Z.; Yip, H. L.; Liang, P. W.; Li, X. S.;
Jen, A. K. Y. “Doping of fullerenes via anion-induced electron transfer
and its Iimplication for surfactant facilitated high performance polymer
solar cells”. Adv. Mater. 2013, 25, 4425−4430.
[78] Kim, J. H.; Chueh, C.-C.; Williams, S. T.; Jen, A. K.-Y. “Room
temperature, solution-processable organic electron extraction layer for
high-performance planar heterojunction perovskite solar cells”. Nanoscale
2015, 7, 17343−17349.
[79] Deng, L.-L.; Xie, S. Y.; Gao, F. “Fullerene-based materials for
photovoltaic applications: toward efficient, hysteresis-free, and stable
perovskite solar cells”. Adv. Electron. Mater. 2017, 1700435.
142
[80] Zhang, F.; Jiang, K.; Huang, J.; Yu, C.; Li, S.; Chen, S. M. “A novel
compact DPP dye with enhanced light harvesting and charge transfer
properties for highly efficient DSCs”. J. Mater. Chem. A 2013, 1, 4858-
4863.
[81] Zhao, B.; Sun, K.; Xue, F.; Ouyang, J. “Isomers of dialkyl diketo-pyrrolopyrrole:
Electron-deficient units for organic semiconductors”. Org.
Electron., 2012, 13, 2516–2524.
[82] Liu, S. Y.; Shi, M.; Huang, J.; Jin, Z.; Hu, X. Pan, J.; Li, H.; Jen, A. K.
Y.; Chen, H. Z. “C–H activation: making diketopyrrolopyrrole derivatives
easily accessible”. J. Mater. Chem. A 2013, 1, 2795-2805.
[83] Zhang, J.; Kang, D. Y.; Barlow, S.; Marder, S. R. “Transition metalcatalyzed
C–H activation as a route to structurally diverse di(arylthiophenyl)-
diketopyrrolopyrroles”. J. Mater. Chem. 2012, 22, 21392.
[84] Okamoto, K.; Zhang, J.; Housekeeper, J. B.; Marder, S. R.; Luscombe, C.
K. “C-H Arylation reaction: atom efficient and greener syntheses of π-
conjugated small molecules and macromolecules for organic electronic
materials”. Macromolecules 2013, 46, 8059-8078.
[85] Brabec, C. J.; Winder, C.; Saricific, N. S.; Hummelen, J. C.; Dhanabalan,
A.; van Hal, P. A.; Janssen, R. A. J. “A Low‐bandgap semiconducting
polymer for photovoltaic devices and infrared emitting diodes”. Adv.
Funct. Mater. 2002, 12, 709-712.
[86] Xie, L.-H.; Liu, F.; Tang, C.; Hou, X.-Y.; Hua, Y.-R.; Fan, Q.-L.; Huang,
W. “Unexpected one-pot method to synthesize spiro- [fluorene-9,9′ -
xanthene] building blocks for blue-light-emitting materials”. Org. Lett.
2006, 8, 2787-2790.
[87] Bhanuchandra, M.; Yorimitsu, H.; Osuka, A. “Synthesis of spirocyclic
diarylfluorenes by one-pot twofold SNAr reactions of diaryl sulfones with
diarylmethanes”. Org. Lett. 2016, 18, 384-387.
143
[88] Saragi, T. P. I.; Spehr, T.; Siebert, A.; Lieker, T. F.; Salbeck, J. “Spiro
compounds for organic optoelectronics”. Chem. Rev. 2007, 107, 1011-
1065.
[89] Quere, D. “Wetting and roughness”. Annu. Rev. Mater. Res. 2008, 38, 71-
99.
[90] Bi, C.; Wang, Q.; Shao, Y.; Yuan, Y.; Xiao, Z.; Huang, J. “Non-wetting
surface-driven high-aspect-ratio crystalline grain growth for efficient
hybrid perovskite solar cells”. Nat. Commun. 2015, 6, 7747-7783.
[91] Chiang, C. H.; Nazeeruddin, M. K.; Gratzel, M.; Wu, C. G. “The
synergistic effect of H2O and DMF towards stable and 20% efficiency
inverted perovskite solar cells”. Energy Environ. Sci. 2017, 10, 808-817.
[92] Li, H.; Haque, S. A.; Kitaygorodskiy, A.; Meziani, M. J.; Castillo, M. T.;
Sun, Y. P. “Alternatively modified Bingel reaction for efficient syntheses
of C60 hexakis- adducts”. Org. Lett. 2006, 8, 5641-5643.
[93] Richardson, C. F.; Schuster, D. I.; Wilson, S. R. “Synthesis and
characterization of water-soluble amino fullerene derivatives”. Org. Lett.
2000, 2, 1011-1014.
[94] Guldi, D. M.; Hungerbuhler, H,; Asmus, K. D. “Unusual redox behavior
of a water soluble malonic acid derivative of C60: evidence for possible
cluster formation”. J. Phys. Chem. 1995, 99, 13487-13493.
[95] Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.;
Fosliropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver,
K. E.; Sensharma, D.; Whetten, R. L. “Characterization of the soluble allcarbon
molecules C60 and C70”. The Journal of Physical Chemistry 1990,
94, 8631-8633.
[96] Cataldo, F.; Groth, S.I.; Hafez, Y. “On the molar extinction coefficients of
the electronic absorption spectra of C60 and C70 fullerenes radical cation”.
Eur. Chem. Bull. 2013, 2, 1013-1018.
144
[97] Diao, G.; Li, L.; Zhang, Z. “The electrochemical reduction of fullerenes,
C60 and C70”. Talanta 1996, 43, 1633-1637.
[98] Benson-Smith, J. J.; Ohkita, H.; Cook, S.; Durrant, J. R.; Bradley, D. D.
C.; Nelson, J. “Charge separation and fullerene triplet formation in bled
films of polyfluorene polymers with PCBM”. J. Dalton Trans. 2009,
10000-10005.
[99] Ma, J.; Chang, J.; Lin, Z.; Guo, X.; Zhou, L.; Liu, Z.; Xi, H.; Chen, D.;
Zhang, C.; Hao, Y. “Elucidating the role of TiCl4 and PCBM fullerene
treatment on TiO2 electron transporting Layer for highly efficinet planar
perovskite solar cells”. J. Phys. Chem. C. 2018, 122, 1044-1053.
[100] Heo, J. H.; Han, H. J.; Kim, D.; Ahn, T. K.; Im, S. H. “Hysteresis-less
inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1%
power conversion efficiency”. Energy Environ. Sci. 2015, 8, 1602-1608.
[101] Heo, J. H.; Song, D. H.; Im, S. H. “Planar CH3NH3PbBr3 hybrid solar
cells with 10.4% power conversion efficiency, fabricated by controlled
crystallization in the spin-coating process”. Adv. Mater. 2014, 26, 8179-
8183.
[102] Liu, C.; Wang, K.; Du, P.; Meng, T.; Yu, X.; Cheng, S. Z. D.; Gong, X.
“High performance planar heterojunction perovskite solar cells with
fullerene derivatives as the electron transport layer”. ACS Appl. Mater.
Interfaces 2015, 7, 1153-1159.
[103] Koh, T. M.; Fu, K.; Fang, Y.; Chen, S.; Sum, T. C.; Mathews, N.;
Mhaisalkar, S. G.; Boix, P. P.; Baikie, T. “Formamidinium containing
metal-halide: an alternative material for near-IR absorption perovskite
solar cells”. J. Phys. Chem. C 2013, 118, 16458-16462.
[104] Cao, T.; Huang, P.; Zhang, K.; Sun, Z.; Zhu, K.; Yuan, L.; Chen, K.;
Chen, N.; Li, Y. F. “Interfacial engineering via inserting functionalized
water-soluble fullerene derivative interlayers for enhancing the
145
performance of perovskite solar cells”. J. Mater. Chem. A 2018, 6, 3435-
3443
[105] Chena, K.; Cao, T,; Suna, Z.; Wang, D.; Chen, N.; LI, Y. F. “Performance
enhancement of perovskite solar cells through interfacial engineering:
Water-soluble fullerenol C60(OH)16 as interfacial modification layer.”
Organic Electronics 2018, 62, 327-334”.
[106] Mosconi, E.; Ronca, E.; De Angelis, F. “First-principles investigation of
the TiO2/organohalide perovskites interface: The role of interfacial
chlorine”. J. Phys. Chem. Lett. 2014, 5, 2619-2625.
指導教授 Chun-Guey Wu(Chun-Guey Wu) 審核日期 2019-4-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明