以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:109 、訪客IP:3.135.206.240
姓名 蔡尚廷(Shang-Ting Tsai) 查詢紙本館藏 畢業系所 化學學系 論文名稱 具氧化還原性的同碳雙碳烯金錯合物和雙芽手性卡本衍生物及其金屬錯合物之合成與結構鑑定
(Synthesis and Characterization of the Redox-active Carbodicarbene Gold Complexes and Bidentate BINAP-based Chiral Carbone-derivative with their Metal Complexes)相關論文
★ 以咪唑并[1,5-a]吡啶結構所合成的同碳雙碳烯之雙金屬錯合物的合成、鑑定以及反應性探討 ★ 卡本之造幣金屬錯合物的合成及性質探討 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 配位基在有機金屬催化反應中扮演著重要的角色,其電子效應與立體效應影響著金屬錯合物的反應性。本實驗室主要發展的新穎配位基,是以重烯為基礎架構的衍生物-卡本,因中心碳上具有兩對未鍵結電子而擁有良好的親核能力,其取代基的設計與金屬錯合物的應用上仍有許多可發展的空間。
本論文使用實驗室已開發的卡本-同碳雙碳烯,與AuCl-SMe2進行反應,可得到同碳雙碳烯與金配位的結構,將其進一步與雙三氟甲磺酸亞胺銀鹽 (AgNTf2) 進行反應,發現溶液由黃色迅速轉為深藍色,由X-ray單晶繞射解析得知其為兩個同碳雙碳烯與金配位,且為帶三價正電陽離子的錯合物,並具有EPR訊號,初步推測可能為配位基上帶有自由基陽離子的結構。
另一方面在配位基的設計上,為了加入反應的鏡像選擇性,使用具大立體障礙及手性的BINAP,並以簡單的SN2反應進行合成,成功開發出具手性的雙芽卡本-同碳磷烷碳烯。為了瞭解此卡本衍生物與金屬錯合物的配位情形,及其中心碳與金屬的親核能力,我們將它與不同的金屬錯合物反應。藉由X-ray單晶繞射解析得知,其同時以三級膦取代基及中心碳與鈀金屬配位,卻僅以三級膦取代基與金配位;而在與銅錯合物的反應中,可以單配位及雙配位的方式與銅金屬鍵結,結果取決於陰離子的電子給予能力強弱。
摘要(英) Ligand design is an important part of organometallic chemistry and catalysis. The electronic parameters and steric hindrance of the ligand influence the reactivity of the metal complexes. The carbodicarbene (CDC), also known as ‘‘bent allene’’, is a new class of low-valent carbon specy. Its electron-donating ability is very strong due to its possession of two free electron pairs, which even surpasses the carbenes. It has emerged as a potential effective ligand next to the carbenes and phosphines.
In the first project, we have successfully isolated CDC-supported tricationic Au-complexes. The complexes are fully characterized by NMR and X-ray diffraction. These Au complexes are EPR-active that CDC moiety are shown to carried radical cations
In second project, we have successfully developed the chiral bidentate carbophosphinocarbene, which is based on the large steric hindrance chiral ligand ‘‘BINAP’’. In this work, we have an interesting in the electron-donating ability of the carbon center at the carbone-derivative, so we have done the experiment with palladium(II), gold(I), and copper(I) metal complexes. The single crystal X-ray structural analysis and NMR spectroscopic studies have been used to understand the coordination sphere. This carbone-derivative can play a bidentate ligand in palladium(II) complexes, but just be a monodentate ligand in gold(I) complexes. Interestingly, it can be not only monodentate ligand but also bidentate ligand in copper(I) complexes, which is dependent on the coordination ability of the counter-anion.
關鍵字(中) ★ 卡本
★ 手性
★ 同碳雙碳烯
★ 雙芽
★ 氧化還原
★ 錯合物關鍵字(英) ★ carbone
★ chiral
★ carbodicarbene
★ bidentate
★ redox-active
★ complex論文目次 目錄
摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
圖目錄 vii
式目錄 x
附表目錄 xiv
附圖目錄 xv
簡稱說明 xxi
第一章 緒論 1
1-1 前言 1
1-2 膦化物 2
1-3 碳烯 5
1-4 含氮雜環碳烯 9
1-5 彎曲型重烯衍生物-卡本 12
1-6 金催化劑 20
1-7 C2-對稱配位基 23
1-8 研究動機 26
第二章 結果與討論 27
2-1 同碳雙碳烯的金錯合物之合成及探討 27
2-1-1 同碳雙碳烯的金錯合物之合成 31
2-1-2 同碳雙碳烯的金錯合物之晶體結構 39
2-1-3 同碳雙碳烯的金錯合物之探討 45
2-2 手性同碳磷烷碳烯及其衍生物之合成及探討 50
2-2-1 手性同碳磷烷碳烯之合成 55
2-2-2 手性同碳磷烷碳烯衍生物之晶體結構 61
2-2-3 手性同碳磷烷碳烯及其衍生物之探討 63
2-3 手性同碳磷烷碳烯衍生物的金屬錯合物之合成及探討 69
2-3-1 手性同碳磷烷碳烯衍生物的金屬錯合物之合成 73
2-3-2 手性同碳磷烷碳烯衍生物的金屬錯合物之晶體結構 79
2-3-3 手性同碳磷烷碳烯衍生物的金屬錯合物之探討 89
第三章 結論 98
第四章 實驗方法 100
4-1 實驗儀器 100
4-1-1 核磁共振儀 (Nuclear magnetic resonance spectrometer) 100
4-1-2 高解析度磁場式質譜儀 (High resolution magnetic sector mass spectrometer) 101
4-1-3 X-ray單晶繞射解析 (X-ray single-crystal diffraction analysis) 101
4-1-4 電子順磁共振光譜儀 (Electron paramagnetic resonance) 101
4-2 藥品與溶劑 102
4-3 實驗步驟 103
參考文獻 133
附錄一 X-ray晶體與數據 136
附錄二 核磁共振光譜圖 161參考文獻 參考文獻
[1] Leigh, G. J.; Winterton, N. Eds. Royal Society of Chemistry, Cambridge 2002.
[2] Yamanaka, M.; Mikami, K. Organometallics 2005, 24, 4579-4587.
[3] Tolman, C. A. J. Am. Chem. Soc. 1970, 92, 2956-2965.
[4] Tolman, C. A. Chem. Rev. 1977, 77, 313-348.
[5] Bourissou, D.; Guerret, O.; Gabbaï, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39-92.
[6] Nakano, R.; Jazzar, R.; Bertrand, G. Nat. Chem. 2018, 10, 1196-1200.
[7] Hopkinson, M. N.; Richter, C.; Schedler, M.; Glorius, F. Nature 2014, 510, 485-496.
[8] Crabtree, R. H. J. Org. Chem. 2005, 690, 5451-5457.
[9] Wanzlick, H. W.; Schonher.H. J. Angew. Chem., Int. Ed. 1968, 7, 141-142.
[10] Weskamp, T.; Bohm, V. P. W.; Herrmann, W. A. J. Org. Chem. 2000, 600, 12-22.
[11] Arduengo, A. J.; Harlow, R. L.; Kline, M. J. Am. Chem. Soc. 1991, 113, 361-363.
[12] Wang, T.-H.; Chen, W.-C.; Ong, T.-G. J. Chin. Chem. Soc. 2017, 64, 124-132.
[13] Alcarazo, M. Dalton Trans. 2011, 40, 1839-1845.
[14] Ramirez, F.; Desai, N. B.; Hansen, B.; McKelvie, N. J. Am. Chem. Soc. 1961, 83, 3539-3540.
[15] Vicente, J.; Singhal, A. R.; Jones, P. G. Organometallics 2002, 21, 5887-5900.
[16] Petz, W.; Kutschera, C.; Neumuller, B. Organometallics 2005, 24, 5038-5043.
[17] Tonner, R.; Frenking, G. Angew. Chem., Int. Ed. 2007, 46, 8695-8698.
[18] Dyker, C. A.; Lavallo, V.; Donnadieu, B.; Bertrand, G. Angew. Chem., Int. Ed. 2008, 47, 3206-3209.
[19] Furstner, A.; Alcarazo, M.; Krause, H.; Lehmann, C. W. J. Am. Chem. Soc. 2007, 129, 12676-12677.
[20] Chen, W.-C.; Hsu, Y.-C.; Lee, C.-Y.; Yap, G. P. A.; Ong, T.-G. Organometallics 2013, 32, 2435-2442.
[21] Furstner, A.; Alcarazo, M.; Goddard, R.; Lehmann, C. W. Angew. Chem., Int. Ed. 2008, 47, 3210-3214.
[22] Chen, W.-C.; Shen, J.-S.; Jurca, T.; Peng, C.-J.; Lin, Y.-H.; Wang, Y.-P.; Shih, W.-C.; Yap, G. P. A.; Ong, T.-G. Angew. Chem., Int. Ed. 2015, 54, 15207-15212.
[23] Shahzad, S. A.; Sajid, M. A.; Khan, Z. A.; Canseco-Gonzalez, D. Synth. Commun. 2017, 47, 735-755.
[24] Norman, R. O. C.; Parr, W. J. E.; Thomas, C. B. J. Chem. Soc. Perkin Trans. 1 1976, 1, 1983-1987.
[25] Teles, J. H.; Brode, S.; Chabanas, M. Angew. Chem., Int. Ed. 1998, 37, 1415-1418.
[26] Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553-11554.
[27] Preiss, S.; Forster, C.; Otto, S.; Bauer, M.; Muller, P.; Hinderberger, D.; Hashemi H. H.; Carella, L.; Heinze, K. Nat. Chem. 2017, 9, 1249-1255.
[28] Knowles, W. S. Angew. Chem., Int. Ed. 2002, 41, 1999-2007.
[29] Kumobayashi, H.; Sayo, N.; Akutagawa, S.; Sakaguchi, T.; Tsuruta, H., Nippon Kagaku Kaishi 1997, 835-846.
[30] Marcum, J. S.; Roberts, C. C.; Manan, R. S.; Cervarich, T. N.; Meek, S. J. J. Am. Chem. Soc. 2017, 139, 15580-15583.
[31] Mezailles, N.; Ricard, L.; Gagosz, F. Org. Lett. 2005, 7, 4133-4136.
[32] Chan, S. C.; Gupta, P.; Engelmann, X.; Ang, Z. Z.; Ganguly, R.; Bill, E.; Ray, K.; Ye, S.; England, J. Angew. Chem., Int. Ed. 2018, 57, 15717-15722.
[33] Matsumoto, Y.; Selim, K. B.; Nakanishi, H.; Yamada, K.-i.; Yamamoto, Y.; Tomioka, K. Tetrahedron Lett. 2010, 51, 404-406.
[34] Wang, Y. M.; Lackner, A. D.; Toste, F. D. Acc. Chem. Res. 2014, 47, 889-901.
[35] Leglaye, P.; Donnadieu, B.; Brunet, J. J.; Chauvin, R. Tetrahedron Lett. 1998, 39, 9179-9182.
[36] Petz, W.; Frenking, G. Springer, Berlin, Heidelberg 2010, 49-92.
[37] Janiak, C. J. Chem. Soc., Dalton Trans. 2000, 3885-3896.
[38] Yogendra, S.; Schulz, S.; Hennersdorf, F.; Kumar, S.; Fischer, R.; Weigand, J. J. Organometallics 2017, 37, 748-754.指導教授 王朝諺 陳銘洲 審核日期 2019-7-2 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare