博碩士論文 106223017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:18.224.59.192
姓名 彭柔樺(Jou-Hua Peng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 含pyridine與BF2-chelated結構及同雜環分子 之液晶性質探討
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在系列一中成功合成出以tetraketonates Ia-3b為配位基,與boron diflouride (BF2)形成其錯合物1a-BF2-3b-BF2,其中僅配位基化合物3b無液晶性質,而其他配位基化合物皆具有液晶相,且化合物2a-BF2, 3a-BF2, 3b-BF2經偏光紋理圖與X-粉末射線繞射實驗結果判定為Colh盤狀液晶。化合物Ia-3b, 1a-BF2-3b-BF2 (n = 12)以紫外光/可見光光譜、螢光光譜及固態螢光光譜探討該分子的光學性質,並可從結果得之增加推電子基的烷氧基數目與從tetraketonates形成含雙BF2錯合物時皆使最大放光波長紅移。化合物2a-BF2, 3a-BF2, 3b-BF2為目前少見含雙BF2結構之盤狀液晶,且3a-BF2, 3b-BF2為室溫液晶。
在系列二中成功合成出以吡啶為中心硬核且各含有兩個吡唑(pyrazole)及異唑(isoxazole)之對稱同雜環衍生化合物2a’-3b’’,本實驗藉由引入雜環系統、改變分子軟硬端比例、改變位向等來觀察以上因素對化合物液晶行為的影響。經偏光紋理圖與X-粉末射線繞射實驗結果能判定含有異唑(isoxazole)的化合物2a’, 3a’及含有吡唑(pyrazole)的化合物2a’’, 3a’’皆有Colh盤狀液晶的出現,而改變位向的化合物2b’-3b’’皆無液晶相出現。化合物2a’-3b’ (n = 12)以紫外光/可見光光譜、螢光光譜探討該分子的光學性質,並可從結果得知對位的化合物2a’, 3a’之最大放光波長較鄰位化合物2b’, 3b’紅移,因其共軛長度較長,故最大放光波長紅移。
摘要(英) Complexes containing boron diflouride (BF2) have been paid much attention during the past years. Many known boron diflouride complexes, widely investigated as fluorescent materials showed potential applications in many areas; such as biological imaging, molecular probes, electroluminescent devices, photosensitizers and others. However, only a few examples were reported among mesogenic applications.
In the first part, six new series of bis-(boron diflouride) complexes 1a-BF2-3b-BF2 derived from substituted tetraketonates Ia-3b were successfully synthesized. All of the substituted tetraketonates were mesogenic except for compound 3b. Results appeared that 2a-BF2, 3a-BF2, 3b-BF2 were enantiotropic columnar mesophase by polarized optical microscope (POM) and powder X-ray diffraction.The optical properties of compounds Ia-3b, 1a-BF2-3b-BF2 (n = 12) were investigated by UV-Vis spectroscopy, fluorescence spectroscopy and solid-state fluorescence spectroscopy. Results appeared that increasing the number of electron-donating groups and chelating bis-(boron diflouride) complexes from substituted tetraketonates might cause redshift. To our best knowledge, there are rare examples of columnar bis(BF2) complexes.
More and more liquid-crystalline compounds nowadays containing five-membered heterocycles are the subject of much investigation. These heterocyclic structures generally incorporated of such electronegative atoms (S, O or N atom) often resulted in a reduced or lowering symmetry for the overall molecules or/and a stronger polar induction. Quite a few examples, including pyrazoles, isoxazoles, 1,3,4-oxadiazoles, and others have been prepared and investigated in our laboratory. Most of them formed smectic phases whereas, only a few of them exhibited columnar phases.
In the second part, four series of symmetrically heterocyclic derivative compound 2a’-3b’’ with a pyridine hard core, pyrazole and isoxazole were successfully synthesized. The research introduced a heterocyclic ring system and changed the aspect ratio, the orientation to observe the influence of the above factors on the behavior of the mesogenic compounds. Results appeared that 2a’, 3a’, 2a’’, 3a’’ were enantiotropic columnar mesophase by polarized optical microscope (POM) and powder X-ray diffraction. The optical properties of compounds 2a’-3b’ (n = 12) were investigated by UV-Vis spectroscopy, fluorescence spectroscopy. Results appeared that the maximum emission wavelength of compounds 2a’, 3a’ at para position were found to be higher than the compounds at meta position due to their longer conjugated length.
關鍵字(中) ★ 盤狀液晶
★ BF2-chelated結構
★ 室溫液晶
★ 同雜環結構
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
謝誌 iv
第一章 緒論 1
1-1 液晶簡介與應用性 2
1-2 液晶分子的基礎架構 6
1-3 液晶作用力 8
1-4 液晶形成方式分類 10
1-4-1 向列型液晶 12
1-4-2 層列型液晶 13
1-4-3 盤狀液晶 14
1-5 Boron difluoride complex簡介 15
1-6 五員雜環簡介 17
1-7 研究動機 19
1-7-1 系列一研究動機 20
1-7-2 系列二研究動機 21
第二章 實驗部分 23
2-1 實驗藥品 24
2-2 儀器設備 26
2-3 實驗流程 29
2-3-1系列一之實驗流程 29
2-3-2系列二之實驗流程 30
2-4實驗步驟 31
2-4-1系列一之合成 31
2-4-2系列二之合成 58
第三章 結果與討論 70
3-1 系列一化合物性質探討 71
3-1-1系列一之結構與代號 71
3-1-2系列一化合物1H NMR探討 72
3-1-3系列一化合物之偏光紋理圖 (POM) 75
3-1-4系列一化合物之熱微差掃描分析儀 (DSC) 79
3-1-5系列一化合物之熱重分析 (TGA) 85
3-1-6 化合物2a-3a-BF2及2b和3b-BF2之Powder X-ray分析與分子模擬排列 86
3-1-7系列一化合物之光學性質探討 97
3-2 系列二化合物性質探討 101
3-2-1系列二之結構與代號 101
3-2-2系列二化合物之偏光紋理圖 (POM) 102
3-2-3系列二化合物之熱微差掃描分析儀 (DSC) 105
3-2-4系列二化合物之熱重分析(TGA) 110
3-2-5系列二化合物2a-3a’’之Powder X-ray分析與分子模擬排列 111
3-2-6系列二化合物2a’-3b’光學性質探討 117
3-2-7系列二化合物2a’’-3b’’變溫IR圖譜 120
第四章 結論 124
4-1 系列一結論 125
4-2 系列二結論 126
參考文獻 128
附圖 137
參考文獻 1. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 1423–1463.
2. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 2897–2920.
3. A. Sysak and B. Obmińska-Mrukowicz, Eur. J. Med. Chem.., 2017, 137, 292–309.
4. A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, V. V. Pakalnis and N. V. Rostovskii, Russ. Chem. Rev., 2015, 84, 335–377.
5. S. Ponra and K. C. Majumdar, RSC Adv., 2016, 6, 37784–37922.
6. J. T. Yu and C. Pan, Chem. Commun., 2016, 52, 2220–2236.
7. C. Qian, M. Liu, G. Hong, P. Xue, P. Gong and R. Lu, Org. Biomol. Chem., 2015, 13, 2986–2998.
8. M. Santra, H. Moon, M. H. Park, T. W. Lee, Y. K. Kim and K. H. Ahn, Chem. Eur. J., 2012, 18, 9886–9893.
9. X. Li and Y. A. Son, Dyes Pigm., 2014, 107, 182–187.
10. J. Massue, D. Frath, G. Ulrich, P. Retailleau and R. Ziessel, Org. Lett., 2012, 14, 230–233.
11. G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser., Nat. Mater., 2009, 8, 747–751.
12. S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen and D. F. O′Shea, J. Mater. Chem. B, 2014, 2, 7459–7463.
13. J. S. Lee, N. Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park and Y. T. Chang, J. Am. Chem. Soc., 2009, 131, 10077–10082.
14. A. Ojida, T. Sakamoto, M. A. Inoue, S. H. Fujishima, G. Lippens and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 6543–6548.
15. T. Kowada, H. Maeda and K. Kikuchi, Chem. Soc. Rev., 2015, 44, 4953–4972.
16. M. Chapran, E. Angioni, N. J. Findlay, B. Breig, V. Cherpak, P. Stakhira, T. Tuttle, D. Volyniuk, J. V. Grazulevicius, Y. A. Nastishin, O. D. Lavrentovich and P. J. Skabara, ACS Appl. Mater. Interfaces, 2017, 9, 4750−4757.
17. Q. Tang, W. Si, C. Huang, K. Ding, W. Huang, P. Chen, Q. Zhang and X. Dong, J. Mater. Chem. B, 2017, 5, 1566–1573.
18. D. O. Frimannsson, M. Grossi, J. Murtagh, F. Paradisi and D. F. O’Shea, J. Med. Chem., 2010, 53, 7337–7343.
19. A. D’Aléo and F. Fages, Photochem. Photobiol. Sci., 2013, 12, 500–510.
20. M. Mamiya, Y. Suwa, H. Okamoto and M. Yamaji, Photochem. Photobiol. Sci., 2016, 15, 928–936.
21. D. J. Wang, B. P. Xu, X. H. Wei and J. Zheng, J. Fluorine Chem., 2012, 140, 49–53.
22. K. Ono, K. Yoshikawa, Y. Tsuji, H. Yamaguchi, R. Uozumi, M. Tomura, K. Taga and K. Saito, Tetrahedron, 2007, 63, 9354–9358.
23. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Macromol. Rapid Commun., 2014, 35, 1315−1319.
24. R. S. Singh, M. Yadav, R. K. Gupta, R. Pandey and D. S. Pandey, Dalton Trans., 2013, 42, 1696–1707.
25. M. J. Kwak and Y. Kim, Bull. Korean Chem. Soc., 2009, 30, 2865–2866.
26. K. Benelhadj, J. Massue and G. Ulrich, New J. Chem., 2016, 40, 5877–5884.
27. Q. Liu, X. Wang, H. Yan, Y. Wu, Z. Li, S. Gong, P. Liu and Z. Liu, J. Mater. Chem. C, 2015, 3, 2953–2959.
28. T. M. H. Vuong, J. Weimmerskirch-Aubatin, J. F. Lohier, N. Bar, S. Boudin, C. Labbé, F. Gourbilleau, H. Nguyen, T. T. Dang and Didier Villemin, New J. Chem., 2016, 40, 6070–6076.
29. Y. Meesala, V. Kavala, H. C. Chang, T. S. Kuo, C. F. Yao and W. Z. Lee, Dalton Trans., 2015, 44, 1120–1129.
30. W. Li, W. Lin, J. Wang and X. Guan, Org. Lett., 2013, 15, 1768–1771.
31. X. Zhang, H. Yu and Y. Xiao, J. Org. Chem., 2012, 77, 669−673.
32. S. M. Barbon, J. T. Price, P. A. Reinkeluers and J. B. Gilroy, Inorg. Chem., 2014, 53, 10585−10593.
33. H. M. Ko, J. Korean Chem. Soc., 2016, 60, 21−27.
34. A. D′Aléo, A. Felouat, V. Heresanu, A. Ranguis, D. Chaudanson, A. Karapetyan, M. Giorgi and F. Fages, J. Mater. Chem. C, 2014, 2, 5208–5215.
35. E. Cogné-Laage, J. F. Allemand, O. Ruel, J. B. Baudin, V. Croquette, M. Blanchard-Desce, and Ludovic Jullien, Chem. Eur. J., 2004, 10, 1445–1455.
36. L. A. Padilha, S. Webster, O. V. Przhonska, H. Hu, D. Peceli, T. R. Ensley, M. V. Bondar, A. O. Gerasov, Y. P. Kovtun, M. P. Shandura, A. D. Kachkovski, D. J. Hagan and E. W. Van Stryland, J. Phys. Chem. A, 2010, 114, 6493–6501.
37. C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova and A. Moore, J. Am. Chem. Soc., 2009, 131, 15257–15261.
38. M. J. Mayoral, P. Ovejero, M. Cano and G. Orellana, Dalton Trans., 2011, 40, 377–383.
39. A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno and H. Ikeda, Tetrahedron Lett., 2012, 53, 4138–4141.
40. G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas and C. L. Fraser, J. Am. Chem. Soc., 2007, 129, 8942–8943.
41. Y. Sun, D. Rohde, Y. Liu, L. Wan, Y. Wang, W. Wu, C. Di, G. Yu and D. Zhu, J. Mater. Chem., 2006, 16, 4499–4503.
42. C. A. DeRosa, J. Samonina-Kosicka, Z. Fan, H. C. Hendargo, D. H. Weitzel, G. M. Palmer and C. L. Fraser, Macromolecules, 2015, 48, 2967−2977.
43. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Chem. Eur. J., 2013, 19, 4506–4512.
44. R. Tan, Q. Lin, Y. Wen, S. Xiao, S. Wang, R. Zhang and T. Yi, CrystEngComm, 2015, 17, 66746680.
45. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891−4932.
46. N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
47. J. Bañuelos, F. L. Arbeloa, T. Arbeloa, V. Martinez and I. L. Arbeloa, Applied Science Innovations Pvt. Ltd. 2012.
48. J.-H. Olivier, F. Camerel, G. Ulrich, J. Barberá and R. Ziessel, Chem. Eur. J., 2010, 16, 7134–7142.
49. F. Camerel, L. Bonardi, G. Ulrich, L. Charbonnière, B. Donnio, C. Bourgogne, D. Guillon, P. Retailleau and R. Ziessel, Chem. Mater., 2006, 18, 5009–5021.
50. F. Camerel, L. Bonardi, M. Schmutz and R. Ziessel, J. Am. Chem. Soc., 2006, 128, 4548–4549.
51. S. M. Barbon, V. N. Staroverov, P. D. Boyle and J. B. Gilroy, Dalton Trans., 2014, 43, 240–250.
52. M. C. Chang, A. Chantzis, D. Jacquemin and E. Otten, Dalton Trans., 2016, 45, 9477–9484.
53. S. M. Barbon, J. T. Price, U. Yogarajah and J. B. Gilroy, RSC Adv., 2015, 5, 56316–56324.
54. M. C. Chang and E. Otten, Chem. Commun., 2014, 50, 7431–7433.
55. S. M. Barbon, V. N. Staroverov and J. B. Gilroy, J. Org. Chem., 2015, 80, 5226−5235.
56. A. Kamal, A. B. Shaik, B. B. Rao, I. Khan, G. B. Kumara and N. Jain, Org. Biomol. Chem., 2015, 13, 10162–10178.
57. H. Chuang, L. C. S. Huang, M. Kapoor, Y. J. Liao, C. L. Yang, C. C. Chang, C. Y. Wu, J. R. Hwu, T. J. Huang and M. H. Hsu, Med. Chem. Commun., 2016, 7, 832–836.
58. L. Yan, J. Wu, H. Chen, S. Zhang, Z. Wang, H. Wang and F. Wu, RSC Adv., 2015, 5, 73660–73669.
59. T. S. Kamatchi, P. Kalaivani, F. R. Fronczek, K. Natarajan and R. Prabhakaran, RSC Adv., 2016, 6, 46531–46547.
60. H. Andleeb, Y. Tehseen, S. J. A. Shah, I. Khan, J. Iqbal and S. Hameed, RSC Adv., 2016, 6, 77688–77700.
61. B. A. Chalyk, I. Y. Kandaurova, K. V. Hrebeniuk, O. V. Manoilenko, I. B. Kulik, R. T. Iminov, V. Kubyshkin, A. V. Tverdokhlebov, O. K. Ablialimov and P. K. Mykhailiuk, RSC Adv., 2016, 6, 25713–2572.
62. J. Fernández, J. Chicharro, J. M. Bueno and M. Lorenzo, Chem. Commun., 2016, 52, 10190–10192.
63. I. Triandafillidi and C. G. Kokotos, Org. Lett., 2017, 19, 106–109.
64. H. Yu, P. Ge, J. Chen, H. Xie and Yi Luo, Environ. Sci.: Processes Impacts, 2017, 19, 379–387.
65. K. T. Lin, G. H. Lee and C. K. Lai, Tetrahedron, 2015, 71, 4352–4361.
66. H. H. G. Tsai, L. C. Chou, S. C. Lin, H. S. Sheu and C. K. Lai, Tetrahedron Lett., 2009, 50, 1906–1910.
67. K. T. Lin and C. K. Lai, Tetrahedron, 2016, 72, 7579–7588.
68. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2014, 70, 6457–6466.
69. S. Y. Chou, C. J. Chen, S. L. Tsai, H. S. Sheu,G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 1130–1139.
70. M. C. Chen, S. C. Lee, C. C. Ho, T. S. Hu, G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 9460–9467.
71. T. Ikeda, T. Iijima, R. Sekiya, O. Takahashi and T. Haino, J. Org. Chem., 2016, 81, 6832–6837.
72. R. J. Fox, C. E. Markwalter, M. Lawler, K. Zhu, J. Albrecht, J. Payack and M. D. Eastgate. Org. Process Res. Dev., 2017, 21, 754–762.
73. D. Nagaraju, E. Rajanarendar, P. P. Kumar and M. N. Reddy, New J. Chem., 2017, 41, 4783–4787.
74. Q. Jin, J. Li, L. Zhang, S. Fanga and M. Liu, CrystEngComm, 2015, 17, 8058–8063.
75. C. T. Liao, Y. J. Wang, C. S. Huang, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2007, 63, 12437–12445.
76. T. S. Hu, K. T. Lin, C. C. Mu, H. M. Kuo, M. C. Chen and C. K. Lai, Tetrahedron, 2014, 70, 9204–9213.
77. A. C. Götzinger, F. A. Theßeling, C. Hoppe and T. J. J. Müller, J. Org. Chem., 2016, 81, 10328–10338.
78. C. Cuerva, J. A. Campo, M. Cano, J. Sanz, I. Sobrados, V. Diez-Gómez, A. Rivera-Calzada and R. Schmidt, Inorg. Chem., 2016, 55, 6995–7002.
79. B. W. Cong, Z. H. Su, Z. F. Zhao, B. Y. Yu, W. Q. Zhao and X. J. Ma, Dalton Trans., 2017, 46, 7577–7583.
80. J. Li, G. Dong, L. Duan, D. Ma, T. Hu, Y. Zhang, L. Wang and Y. Qiu, RSC Adv., 2014, 4, 51294–51297.
81. C. M. Che, C. F. Chow, M. Y. Yuen, V. A. L. Roy, W. Lu, Y. Chen, S. S. Y. Chui and N. Zhu, Chem. Sci., 2011, 2, 216–220.
82. J. L. Liao, Y. Chi, J. Y. Wang, Z. N. Chen, Z. H. Tsai, W. Y. Hung, M. R. Tseng, and G. H. Lee, Inorg. Chem., 2016, 55, 6394–6404.
83. J. H. Yum, T. Moehl, J. Yoon, A. K. Chandiran, F. Kessler, P. Gratia, and M. Grätzel, J. Phys. Chem. C, 2014, 118, 16799–16805.
84. H. Kusama, H. Sugihara, and K. Sayama, J. Phys. Chem. C, 2009, 113, 48.
85. K. L. Wu, A. J. Huckaba, J. N. Clifford, Y. W. Yang, A. Yella, E. Palomares, M. Grätzel, Y. Chi and M. K. Nazeeruddin, Inorg. Chem., 2016, 55, 7388–7395.
86. F. Strinitz, J. Tucher, J. A. Januszewski, A. R. Waterloo, P. Stegner, S. Förtsch, E. Hübner, R. R. Tykwinski and N. Burzlaff, Organometallics, 2014, 33, 5129–5144.
87. H. M. Kuo, S. Y. Li, H. S. Sheu and C. K. Lai, Tetrahedron, 2012, 68, 7331–7337.
88. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2013, 69, 9045–9055.
89. H. M. Kuo, Y. L. Chen, G. H. Lee and C. K. Lai, Tetrahedron, 2016, 72, 6843–6853.
90. C. K. Lai, Y. C. Ke, J. C. Su, C. Shen and W. R. Li, Liq. Cryst., 2002, 29, 915–920.
91. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torresb and M. Cano, Dalton Trans., 2014, 43, 8849–8860.
92. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torres, E. Oliveira, S. M. Santos, C. L. and M. Cano, J. Mater. Chem. C, 2014, 2, 9167–9181.
93. W. C. Shen, Y. J. Wang, K. L. Cheng, G. H. Lee and C. K. Lai, Tetrahedron, 2006, 62, 8035–8044.
94. S. Kuwata and T. Ikariya, Chem. Commun., 2014, 50, 14290–14300.
95. T. Toda, K. Saitoh, A. Yoshinari, T. Ikariya and S. Kuwata, Organometallics, 2017, 36, 1188–1195.
96. W. Ye, X. Xiao, L. Wang, S. Hou and C. Hu, Organometallics., 2017, 36, 2116–2125.
97. S. Kalaivani and T. Narasimhaswamy, J. Phys. Chem. B, 2011, 115, 11554–11565.
98. M. Roohnikan, V. Toader, A. Rey and L. Reven, Langmuir, 2016, 32, 8442–8450.
99. Y. Cai, M. Zheng, Y. Zhu, X. F. Chen, and C. Y. Li, ACS Macro Lett., 2017, 6, 479–484.
100. H. Y. Lin, H. M. Kuo, S. G. Wen, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2012, 68, 6231–6239.
101. M. Denißen,J. Nordmann, J. Dziambor, B. Mayer, W. Frankb
and Thomas J. J. Muller.
102. http://webbook.nist.gov/cgi/cbook.cgi?ID=C288131&Units=SI&Mask=400#UV-Vis-Spec
103. http://webbook.nist.gov/cgi/cbook.cgi?ID=C288142&Units=SI&Mask=400#UV-Vis-Spec
104. 林慧芸, 碩士論文,中央大學化學研究所,民國九十六年.
105. 李侑倫, 碩士論文,中央大學化學研究所,民國一百零四年.
106. 陳雅雯, 碩士論文,中央大學化學研究所,民國一百零六年.
107. 謝昌樺, 碩士論文,中央大學化學研究所,民國一百零七年.
108. Ya-Wen Chen, Yen-Chun Lin, Hsiu-Ming Kuoa and Chung K. Lai, J. Mater. Chem. C, 2017,5, 5465-5477
指導教授 賴重光 審核日期 2019-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明