博碩士論文 106223012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.218.61.16
姓名 敖奕婷(Yi-Ting Ao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以超音波輔助深共熔溶劑液液微萃取法快速檢測水樣中BTRs及BTs的含量
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,苯并三唑類化合物(Benzotriazoles,簡稱BTRs) 與苯並噻唑類化合物 (Benzothiazoles ,簡稱BTs)被廣泛應用於工業合成、藥物開發、家用清潔劑製造等領域。但研究發現,BTRs及BTs除了對動、植物具有危害外,也能使細菌細胞發生突變,對人類來說更是潛在致癌物質。另一方面,因BTRs和BTs的高極性、高水溶性特點,易殘留於環境水體中,經由環境流布、生物濃縮等效應,造成環境汙染及危害人體健康。因此有必要開發出一套快速、簡單的檢測方法檢測環境水體中BTRs和BTs的濃度。
深共熔溶劑(Deep Eutectic Solvents,簡稱DES),為一綠色化學溶劑,主要由四級銨鹽搭配氫鍵供應者,在不同比例結合下會形成具極性的混合溶劑,可用來作為萃取極性待測物的萃取劑。本研究所使用的DES由四級銨鹽的氯化膽鹼(Choline Chloride)搭配苯酚(Phenol)做為氫鍵供應者。以Phenol : Choline Choride=2:1比例在溫度50℃下反應製備而成,使其由固體混合物呈現出溶液狀態。
本研究將上述製備的DES作為萃取劑,以超音波輔助深共熔溶劑液液微萃取法(Ultrasonic-assisted DES-liquid-liquid microextraction 簡稱USA-DES-LLME),萃取環境水樣中九種BTRs和BTs,結合超高效液相層析串聯質譜儀 (UHPLC-qTOF-MS) 做定性及定量檢測。
本研究使用統計實驗設計 (Statistical experimental design) 法中的Box-Behnken design (BBD) 及變異數分析 (Analysis of variance, ANOVA),找尋USA-DES-LLME的最佳化條件。其最佳化條件為:將5 mL的環境水樣、1 mL的DES 置於離心管中,以超音波震盪20分鐘,接著加入0.5 mL的四氫呋喃(Tetrahydrofuran,簡稱 THF),再以3000 rpm離心7分鐘,取出分層的萃取液後,加入MeOH至500 μL,再取2 µL進樣至UHPLC-qTOF-MS中進行檢測。
九種BTRs和BTs的偵測極限介於0.02-0.5 ng/mL在Intra-day及
Inter-day的測試中,相對標準偏差 (RSD) 皆小於9 %,顯示此方法有良好的穩定性和再現性。在環境水樣中測得的BTRs總濃度介於n.d-40.9 ng/mL之間,而BTs總濃度介於n.d.-57 ng/mL之間。
摘要(英) Currently, Benzotriazoles (BTRs) and Benzothiazoles (BTs) have been widely used in industrial synthesis, drug development, and household cleaner manufacturing, and characterized as the high production volume (HPV) chemicals. The studies have been found that BTRs and BTs can cause mutations in bacterial cells, damage to animals and plants, as well as are potentially carcinogenic to humans. Moreover, due to the high polarity and high water solubility of BTRs and BTs, they are easy to remain in the environmental water bodies, and they endanger the environment and human health through environmental distribution and bioconcentration. Therefore, it is necessary to develop a simple and rapid detect method to determine BTRs and BTs in our environmental system.
Deep Eutectic Solvents (DES), a group of novel “green” solvents, formed by mixing quaternary ammonium salts with hydrogen bond donor at various molar ratios. In this study, Choline Chloride was used as the quaternary ammonium salt and Phenol was chosen as the corresponding hydrogen bond donor. This type of DES was synthesized by mixing Phenol with Choline Chloride (at molar ratio 2:1).The mixture was stirred at 50 °C until a clear liquid was formed, which indicated that the preparation of DES solvent was completed.
In this study, DES was used as a polar extractant to extract nine polar BTRs and BTs compounds in environmental water samples by ultrasonic-assisted DES-liquid-liquid microextraction (USA-DES-LLME) and coupled with ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer (UHPLC-qTOF-MS ) for detection technique.
The parameters of USA-DES-LLME were optimized by multivariate statistic Box-Behnken design (BBD) and analysis of variance (ANOVA). The optimal conditions were: 5 mL of water sample mixed with 1 mL of DES in a centrifuge tube, and sonicated for 20 min in ultrasonic bath, then added 0.5 mL of tetrahydrofuran (THF) to tube. After centrifugation at 3000 rpm for 7 min, the supernatant was collected, reconstituted with methanol to 500 μL, and 2 μL of the extractant was directly injected into UHPLC-qTOF-MS for detection.
The limits of detection (LODs) were 0.02 – 0.5 ng/mL. Intra-day and inter-day precisions (% RSD) for nine target analytes were less than 9%. The results displayed that the method was stable and reproducible. According to preliminary results, the total concentrations of BTRs ranged from n.d. to 40.9 ng/mL, and the total concentrations of BTs were n.d. to 57 ng/mL in our collected surface water samples.
關鍵字(中) ★ 深共熔溶劑
★ 超音波輔助深共熔溶劑液液微萃取法
★ 超高效液相層析串聯質譜儀
★ 苯并三唑類
★ 苯並噻唑類
關鍵字(英) ★ Deep Eutectic Solvents
★ USA-DES-LLME
★ UHPLC-qTOF-MS
★ BTRs
★ BTs
論文目次 摘要 i
謝誌 iii
Abstract iv
目錄 vi
圖目錄 x
表目錄 xii
第一章 前言 1
1-1研究源起 1
1-2研究目標 2
第二章 文獻回顧 3
2-1 BTRs 和BTs簡介 3
2-1-1 BTRs及BTs用途 6
2-1-2環境流布 6
2-1-3對環境及人體影響 7
2-1-4毒性研究 8
2-1-4-1毒性探討 8
2-1-4-2每日暴露量 8
2-1-5相關規範 9
2-1-6相關檢測文獻 9
2-2離子液體 16
2-2-1 離子液體簡介 16
2-2-2深共熔溶劑- Deep Eutectic Solvents(DES) 17
2-2-2-1深共熔溶劑(DES)製備 19
2-2-2-2 深共熔溶劑(DES)應用 19
2-3超高效液相層析高解析串聯質譜儀 19
2-3-1- Core-shell管柱 22
2-4分散式液液微萃取法 24
2-4-1前言 24
2-4-2原理 24
2-4-3流程 25
2-4-4影響因素 26
2-4-5發展 27
2-5超音波輔助深共熔溶液液微萃取法 30
第三章 實驗步驟與樣品分析 33
3-1實驗藥品與設備 33
3-1-1實驗藥品 33
3-1-2儀器設備 36
3-2實驗步驟 37
3-2-1標準品配製 37
3-2-2超高效液相層析串聯質譜儀參數設定 38
3-2-3質量校正 40
3-2-4深共熔溶劑(DES)合成 41
3-2-5超音波輔助深共熔溶劑液液微萃取法 42
3-3樣品採集 43
第四章 結果與討論 45
4-1 UHPLC-qTOF-MS對待測物的測定 45
4-1-1待測物分析 45
4-1-2待測物之質譜圖 47
4-2超音波輔助深共熔溶劑液液微萃取法最佳化條件探討 51
4-2-1單因子最佳化探討 51
4-2-1-1萃取劑(DES)體積 52
4-2-1-2 THF體積 53
4-2-1-3超音波震盪時間 54
4-2-1-4離心時間 55
4-2-2檢量線及偵測極限 56
4-2-3超音波輔助深共熔溶劑液液微萃取法實驗設計最佳化 57
4-2-4因子間交互作用力之探討 61
4-2-4-1殘差分布圖 63
4-2-4-2 Box-Behnkne Design實驗設計最佳化結果 66
4-3 Mandel test & The Lack-of-Fit test 67
4-3-1 Mandel test 67
4-3-2 The Lack-of-Fit test 69
4-4真實水樣之檢測 71
4-5方法精密度與準確度 77
4-6萃取方法比較 78
第五章 結論 81
第六章 參考文獻 83
附錄 91
參考文獻 台灣質譜學會,質譜分析技術原理與應用,2015。
黎正中、陳樹源,實驗設計與分析,2006。
Abbott, A. P.; Capper, G.; Davies, D. L.; Rasheed, R. K.; Tambyrajah, V.: Novel solvent properties of choline chloride/urea mixtures. Chemical Communications 2003, 70-71.
Asimakopoulos, A. G.; Ajibola, A.; Kannan, K.; Thomaidis, N. S.: Occurrence and removal efficiencies of benzotriazoles and benzothiazoles in a wastewater treatment plant in Greece. Science of the Total Environment 2013, 452, 163-171.
Cancilla, D. A.; Baird, J. C.; Rosa, R.: Detection of aircraft deicing additives in groundwater and soil samples from Fairchild Air Force Base, a small to moderate user of deicing fluids. Bulletin of Environmental Contamination and Toxicology 2003, 70, 868-75.
Carpinteiro, I.; Abuin, B.; Ramil, M.; Rodríguez, I.; Cela, R.: Simultaneous determination of benzotriazole and benzothiazole derivatives in aqueous matrices by mixed-mode solid-phase extraction followed by liquid chromatography–tandem mass spectrometry. Analytical and Bioanalytical Chemistry 2012, 402, 2471-2478.
Chen, H.; Chen, R.; Li, S.: Low-density extraction solvent-based solvent terminated dispersive liquid–liquid microextraction combined with gas chromatography-tandem mass spectrometry for the determination of carbamate pesticides in water samples. Journal of Chromatography A 2010, 1217, 1244-1248.
Chipinda, I.; Zhang, X.-D.; Simoyi, R. H.; Siegel, P. D.: Mercaptobenzothiazole allergenicity—role of the thiol group. Cutaneous and Ocular Toxicology 2008, 27, 103-116.
Corsi, S. R.; Zitomer, D. H.; Field, J. A.; Cancilla, D. A.: Nonylphenol ethoxylates and other additives in aircraft deicers, antiicers, and waters receiving airport runoff. Environmental Science & Technology 2003, 37, 4031-4037.
Fiehn, O.; Reemtsma, T.; Jekel, M.: Extraction and analysis of various benzothiazoles from industrial wastewater. Analytica Chimica Acta 1994, 295, 297-305.
Fontana, A. R.; Wuilloud, R. G.; Martínez, L. D.; Altamirano, J. C.: Simple approach based on ultrasound-assisted emulsification-microextraction for determination of polibrominated flame retardants in water samples by gas chromatography–mass spectrometry. Journal of Chromatography A 2009, 1216, 147-153.
Guillarme, D.; Fekete, S.: Fast and Efficient HPLC Separations With Superficially Porous Particles. PerkinElmer, Inc 2013.
Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R.: Efficient tandem solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide contaminants in environmental water samples. Journal of Chromatography A 2013, 1309, 22-32.
Herrero, P.; Borrull, F.; Pocurull, E.; Marcé, R. M.: An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. TrAC Trends in Analytical Chemistry 2014, 62, 46-55.
Janna, H.; Scrimshaw, M. D.; Williams, R. J.; Churchley, J.; Sumpter, J. P.: From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment. Environmental Science & Technology 2011, 45, 3858-3864.
Jover, E.; Matamoros, V.; Bayona, J. M.: Characterization of benzothiazoles, benzotriazoles and benzosulfonamides in aqueous matrixes by solid-phase extraction followed by comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry. Journal of Chromatography A 2009, 1216, 4013-4019.
Khezeli, T.; Daneshfar, A.; Sahraei, R.: Emulsification liquid-liquid microextraction based on deep eutectic solvent: An extraction method for the determination of benzene, toluene, ethylbenzene and seven polycyclic aromatic hydrocarbons from water samples. Journal of Chromatography A 2015, 1425, 25-33.
Kloepfer, A.; Jekel, M.; Reemtsma, T.: Determination of benzothiazoles from complex aqueous samples by liquid chromatography–mass spectrometry following solid-phase extraction. Journal of Chromatography A 2004, 1058, 81-88.
Leong, M.-I.; Huang, S.-D.: Dispersive liquid–liquid microextraction method based on solidification of floating organic drop combined with gas chromatography with electron-capture or mass spectrometry detection. Journal of Chromatography A 2008, 1211, 8-12.
Liu, Y.-S.; Ying, G.-G.; Shareef, A.; Kookana, R. S.: Simultaneous determination of benzotriazoles and ultraviolet filters in ground water, effluent and biosolid samples using gas chromatography–tandem mass spectrometry. Journal of Chromatography A 2011, 1218, 5328-5335.
Matamoros, V.; Jover, E.; Bayona, J. M.: Occurrence and fate of benzothiazoles and benzotriazoles in constructed wetlands. Water Science and Technology 2010, 61, 191-198.
McNeill, K.; Cancilla, D.: Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology 2009, 82, 265-269.
Naccarato, A.; Gionfriddo, E.; Sindona, G.; Tagarelli, A.: Simultaneous determination of benzothiazoles, benzotriazoles and benzosulfonamides by solid phase microextraction-gas chromatography-triple quadrupole mass spectrometry in environmental aqueous matrices and human urine. Journal of Chromatography A 2014, 1338, 164-73.
Ni, H.-G.; Lu, F.-H.; Luo, X.-L.; Tian, H.-Y.; Zeng, E. Y.: Occurrence, phase distribution, and mass loadings of benzothiazoles in riverine runoff of the Pearl River Delta, China. Environmental Science & Technology 2008, 42, 1892-1897.
Pena, M. T.; Vecino-Bello, X.; Casais, M. C.; Mejuto, M. C.; Cela, R.: Optimization of a dispersive liquid-liquid microextraction method for the analysis of benzotriazoles and benzothiazoles in water samples. Analytical and Bioanalytical Chemistry 2012, 402, 1679-95.
Puig, A.; Ormad, P.; Sarasa, J.; Gimeno, E.; Ovelleiro, J.: Wastewater from the manufacture of rubber vulcanization accelerators: characterization, downstream monitoring and chemical treatment. Journal of Chromatography A 1996, 733, 511-522.
Rogers, R. D.; Seddon, K. R.: Ionic liquids--solvents of the future? Science 2003, 302, 792-793.
Reemtsma, T.: Determination of 2‐substituted benzothiazoles of industrial use from water by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry 2000, 14, 1612-1618.
Rezaee, M.; Assadi, Y.; Hosseini, M.-R. M.; Aghaee, E.; Ahmadi, F.; Berijani, S.: Determination of organic compounds in water using dispersive liquid–liquid microextraction. Journal of Chromatography A 2006, 1116, 1-9.
Schlumpf, M.; Cotton, B.; Conscience, M.; Haller, V.; Steinmann, B.; Lichtensteiger, W.: In vitro and in vivo estrogenicity of UV screens. Environmental Health Perspectives 2001, 109, 239-244.
Sorahan, T.: Bladder cancer risks in workers manufacturing chemicals for the rubber industry. Occupational Medicine 2008, 58, 496-501.
Speltini, A.; Maraschi, F.; Sturini, M.; Contini, M.; Profumo, A.: Dispersive multi-walled carbon nanotubes extraction of benzenesulfonamides, benzotriazoles, and benzothiazoles from environmental waters followed by microwave desorption and HPLC-HESI-MS/MS. Analytical and Bioanalytical Chemistry 2017, 409, 6709-6718.
Speltini, A.; Sturini, M.; Maraschi, F.; Porta, A.; Profumo, A.: Fast low-pressurized microwave-assisted extraction of benzotriazole, benzothiazole and benezenesulfonamide compounds from soil samples. Talanta 2016, 147, 322-7.
Tang, B.; Zhang, H.; Row, K. H.: Application of deep eutectic solvents in the extraction and separation of target compounds from various samples. Journal of Separation Science 2015, 38, 1053-64.
Torimoto, T.; Tsuda, T.; Okazaki, K. i.; Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Advanced Materials 2010, 22, 1196-1221.
van Leerdam, J. A.; Hogenboom, A. C.; van der Kooi, M. M.; de Voogt, P.: Determination of polar 1H-benzotriazoles and benzothiazoles in water by solid-phase extraction and liquid chromatography - LTQ - FT Orbitrap mass spectrometry. International Journal of Mass Spectrometry 2009, 282, 99-107.
Voutsa, D.; Hartmann, P.; Schaffner, C.; Giger, W.: Benzotriazoles, alkylphenols and bisphenol A in municipal wastewaters and in the Glatt River, Switzerland. Environmental Science and Pollution Research 2006, 13, 333-341.
Wan, Y.; Xue, J.; Kannan, K.: Benzothiazoles in indoor air from Albany, New York, USA, and its implications for inhalation exposure. Journal of Hazardous Materials 2016, 311, 37-42.
Wang, L.; Asimakopoulos, A. G.; Moon, H.-B.; Nakata, H.; Kannan, K.: Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environmental Science & Technology 2013, 47, 4752-4759.
Wang, L.; Zhang, J.; Sun, H.; Zhou, Q.: Widespread Occurrence of Benzotriazoles and Benzothiazoles in Tap Water: Influencing Factors and Contribution to Human Exposure. Environmental Science & Technology 2016, 50, 2709-17.
Wang, X.; Suskind, R. R.: Comparative studies of the sensitization potential of morpholine, 2‐mercaptobenzothiazole and 2 of their derivatives in guinea pigs. Contact dermatitis 1988, 19, 11-15.
Weiss, S.; Reemtsma, T.: Determination of benzotriazole corrosion inhibitors from aqueous environmental samples by liquid chromatography-electrospray ionization-tandem mass spectrometry. Analytical Chemistry 2005, 77, 7415-7420.
Wick, A.; Fink, G.; Ternes, T. A.: Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography–tandem mass spectrometry. Journal of Chromatography A 2010, 1217, 2088-2103.
Wilkes, J. S.; Zaworotko, M. J.: Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. Journal of the Chemical Society, Chemical Communications 1992, 965-967.
Zgoła-Grześkowiak, A.; Grześkowiak, T.: Dispersive liquid-liquid microextraction. TrAC Trends in Analytical Chemistry 2011, 30, 1382-1399.
指導教授 丁望賢(Wang-hsien Ding) 審核日期 2019-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明