參考文獻 |
1. Hoskins, B. F., & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc., 1990, 112, 1546-1554.
2. Tomic, E. A. Thermal stability of coordination polymers. J. Appl. Polym. Sci., 1965, 9, 3745-3752.
3. Gliemann, H., & Wöll, C. Epitaxially grown metal-organic frameworks. Mater. Today, 2012, 15, 110-116.
4. Yaghi, O. M., Li, G., & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature, 1995, 378, 703-706.
5. Li, H., Eddaoudi, M., O′Keeffe, M., et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402, 276-279.
6. The Cambridge Crystallographic Data Centre.
https://www.ccdc.cam.ac.uk/support-and-resources/support/case/?caseid=9833bd2c-27f9-4ff7-8186-71a9b415f012.
7. Matsuda, R., Kitaura, R., Kitagawa, S., et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005, 436, 238-241.
8. Li, J.-R., Sculley, J., & Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev., 2012, 112, 869-932.
9. Chughtai, A. H., Ahmad, N., Younus, H. A., et al. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev., 2015, 44, 6804-6849.
10. Kreno, L. E., Leong, K., Farha, O. K., et al. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev., 2012, 112, 1105-1125.
11. Horcajada, P., Chalati, T., Serre, C., et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2009, 9, 172.
12. Sheberla, D., Bachman, J. C., Elias, J. S., et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater., 2016, 16, 220.
13. Everett, D. H. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure and Applied Chemistry (Vol. 31, pp. 577).
14. Falcaro, P., Ricco, R., Doherty, C. M., et al. MOF positioning technology and device fabrication. Chem. Soc. Rev., 2014, 43, 5513-5560.
15. Stock, N., & Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev., 2012, 112, 933-969.
16. Tranchemontagne, D. J., Hunt, J. R., & Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 8553-8557.
17. Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem. Int. Ed. Engl., 1985, 24, 1026-1040.
18. Klinowski, J., Almeida Paz, F. A., Silva, P., et al. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans., 2011, 40, 321-330.
19. Ameloot, R., Stappers, L., Fransaer, J., et al. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mat., 2009, 21, 2580-2582.
20. Pichon, A., Lazuen-Garay, A., & James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 2006, 8, 211-214.
21. Qiu, L.-G., Li, Z.-Q., Wu, Y., et al. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun., 2008, 3642-3644.
22. Phan, A., Doonan, C. J., Uribe-Romo, F. J., et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res., 2010, 43, 58-67.
23. Huang, X.-C., Lin, Y.-Y., Zhang, J.-P., et al. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed., 2006, 45, 1557-1559.
24. Park, K. S., Ni, Z., Côté, A. P., et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci., 2006, 103, 10186.
25. Banerjee, R., Phan, A., Wang, B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 2008, 319, 939.
26. James, S. L., Adams, C. J., Bolm, C., et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41, 413-447.
27. Introducing mechanochemistry.
https://www.chemistryworld.com/features/introducing-mechanochemistry/3009223.article.
28. Hu, Z., Peng, Y., Kang, Z., et al. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg. Chem., 2015, 54, 4862-4868.
29. Schaate, A., Roy, P., Godt, A., et al. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chem.--Eur. J., 2011, 17, 6643-6651.
30. Dahl, J. A., Maddux, B. L. S., & Hutchison, J. E. Toward Greener Nanosynthesis. Chem. Rev., 2007, 107, 2228-2269.
31. Halliwell, B., & Gutteridge, J. M. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med, 1995, 18, 125-126.
32. Valko, M., Leibfritz, D., Moncol, J., et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39, 44-84.
33. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot., 2003, 91, 179-194.
34. MatÉs, J. M., Pérez-Gómez, C., & De Castro, I. N. Antioxidant enzymes and human diseases. Clin. Biochem., 1999, 32, 595-603.
35. Deisseroth, A., & Dounce, A. L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev, 1970, 50, 319-375.
36. Fita, I., & Rossmann, M. G. The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci., 1985, 82, 1604.
37. Chance, B. EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. J. Biol. Chem., 1952, 194, 471-481.
38. Catalase.
https://en.wikipedia.org/wiki/Catalase.
39. Gomes-Ruffi, C. R., Cunha, R. H. d., Almeida, E. L., et al. Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT, 2012, 49, 96-101.
40. Hakala, T. K., Liitiä, T., & Suurnäkki, A. Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydr. Polym., 2013, 93, 102-108.
41. Subba Rao, C., Sathish, T., Ravichandra, P., et al. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem., 2009, 44, 262-268.
42. Tong, Z., Qingxiang, Z., Hui, H., et al. Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere, 1997, 34, 893-903.
43. Luo, K., Yang, Q., Yu, J., et al. Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour. Technol., 2011, 102, 7103-7110.
44. Tonini, D., & Astrup, T. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manage., 2012, 32, 165-176.
45. Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv., 2012, 30, 489-511.
46. Homaei, A. A., Sariri, R., Vianello, F., et al. Enzyme immobilization: an update. J Chem Biol, 2013, 6, 185-205.
47. Brodelius, P. (1978, 1978//). Industrial applications of immobilized biocatalysts. Paper presented at the Advances in Biochemical Engineering, Volume 10, Berlin, Heidelberg.
48. Datta, S., Christena, L. R., & Rajaram, Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013, 3, 1-9.
49. Enzyme Immobilization.
https://www.easybiologyclass.com/.
50. Brady, D., & Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett., 2009, 31, 1639.
51. Wong, L. S., Thirlway, J., & Micklefield, J. Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. J. Am. Chem. Soc., 2008, 130, 12456-12464.
52. Hsieh, H.-J., Liu, P.-C., & Liao, W.-J. Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol. Lett., 2000, 22, 1459-1464.
53. Ispas, C., Sokolov, I., & Andreescu, S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal. Bioanal. Chem., 2009, 393, 543-554.
54. Bernfeld, P., & Wan, J. Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science, 1963, 142, 678.
55. Shen, Q., Yang, R., Hua, X., et al. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem., 2011, 46, 1565-1571.
56. Wang, Z.-G., Wan, L.-S., Liu, Z.-M., et al. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B: Enzym., 2009, 56, 189-195.
57. Wen, H., Nallathambi, V., Chakraborty, D., et al. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim. Acta, 2011, 175, 283-289.
58. Kim, J., Jia, H., & Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv., 2006, 24, 296-308.
59. Liang, W., Xu, H., Carraro, F., et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. J. Am. Chem. Soc., 2019, 141, 2348-2355.
60. Bragg William, H., & Bragg William, L. The reflection of X-rays by crystals. Proc. Royal Soc. Lond., 1913, 88, 428-438.
61. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Beer–Lambert law (or Beer–Lambert–Bouguer law).
https://goldbook.iupac.org/html/B/B00626.html.
62. Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57, 603-619.
63. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
64. Jiang, Z.-Y., Woollard, A. C. S., & Wolff, S. P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett., 1990, 268, 69-71.
65. Ou, P., & Wolff, S. P. A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J. Biochem. Biophys. Methods, 1996, 31, 59-67.
66. Nelson, D. P., & Kiesow, L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem., 1972, 49, 474-478. |