博碩士論文 106223046 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:18.218.234.83
姓名 曾昱豪(Yu-Hao Zeng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以Ni摻雜Mn3O4修飾管狀有序中孔洞碳材CMK-5於高能鋰離子電池負極材料之應用及複合式有機無機固(膠)態高分子電解質之結構鑑定與電化學特性研究
相關論文
★ 具立方結構之中孔洞材料 SBA-1與 MCM-48 的合成與鑑定★ 具乙烯官能基之立方結構中孔洞材料 FDU-12 與 SBA-1 的合成與鑑定
★ 醇類及矽源於中孔洞 SBA-1 之合成研究★ 利用分子篩吸附有機硫化物 (噻吩及其衍生物) 與中孔洞 SBA-1 穩定性的研究
★ 矽氧烷改質有機無機複合式高分子電解質之結構鑑定與動力學研究★ 複合式高分子電解質之製備及特性分析暨具磷酸官能基之中孔洞矽材之固態核磁共振研究探討
★ 具不同重複單元之長鏈分枝型固 (膠) 態高分子電解質之合成設計及電化學研究★ 具不同特性單體之混摻型 有機無機固(膠)態高分子電解質 結構鑑定與動力學研究
★ 二維及三維具羧酸官能基中孔洞材料之合成、鑑定及蛋白質之吸附應用★ 三維結構具羧酸官能基大孔洞中孔洞材料之合成、鑑定與酵素固定及染料吸附應用
★ 具羧酸官能基之中孔洞材料於染料吸附 及製備奈米銀顆粒於催化之應用★ 中孔洞碳材於高效能鋰離子電池之應用
★ 具磷酸官能基之中孔洞材料的合成鑑定暨於鑭系金屬及毒物之吸附應用★ 以環氧樹酯合成具不同特性混摻型固 (膠) 態高分子電解質之結構鑑定及電化學研究
★ 三維具羧酸及胺基官能基大孔洞中孔洞材料之合成、鑑定與蛋白質吸附應用★ 超小奈米金屬固定於三維結構中孔洞材料中催化硼烷氨水解產氫及4-硝基苯酚還原之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-30以後開放)
摘要(中) 本論文分為兩部分,第一部分主要是利用摻雜Ni的過渡金屬氧化物Mn3O4修飾於管狀有序中孔洞碳材CMK-5,以含浸法合成出Ni摻雜Mn3O4@CMK-5奈米複合材料,並應用於鋰離子電極的負極。Mn3O4的理論電容高達937 mAh/g,其含量豐富且毒性低,但具有過渡金屬氧化物充放電後體積變化大的缺點,利用中孔洞碳材CMK-5的有序孔道能有效抑制其體積膨脹及提升導電度,並摻入Ni作為晶格膨脹的緩衝劑,避免顆粒聚集情況的發生.藉此提升其電性表現,在電流密度100 mA/g下進行電性測試,經過50圈循環後,能得到高達1263 mAh/g的優異電容量表現。
第二部分是複合式有機無機高分子電解質的合成,根據使用需求製成固態和膠態兩種型態,並應用於鋰離子電池的電解質。製備過程是以4,4′-Methylene diphenyl diisocyanate (MDI)作為交聯劑,與Jeffamine ED2003形成線性前驅物,並導入無機矽源GLYMO及MPEOPS進行聚合水解,合成出導電度優異的高分子電解質薄膜,其中固態電解質於30 °C下離子導電度達1.11 × 10-4 S cm-1,膠態電解質於30 °C下則高達1.86 × 10-3 S cm-1,後續組裝成硬幣型電池進行電性測試,顯示本研究之膠態電解質的循環表現優於市售隔離膜。
摘要(英) Transition metal oxides as anode materials in lithium ion batteries have attracted immense attention in recent years due to their high theoretical capacities as compared with commercial graphite. However, the huge volume change during the charge-discharge process leads to unstable electrochemical performances. In first part, we design a nanocomposite of Ni-doped Mn3O4@CMK-5 to solve the problem. Mn3O4 has high theoretical capacity (937 mAh/g), natural abundance and low toxicity. Ordered mesoporous carbon CMK-5 has nanoscale uniform mesopore, large surface area and good conducting network for both Li ions and electrons. Nickel doping could avoid the drastic volume change and aggregation of nanoparticles. Ni-doped Mn3O4@CMK-5 display a high reversible capacity up to 1263 mAh/g enen after 50 cycles at a current density of 100 mAh/g. The Ni-doped Mn3O4@CMK-5 nanocomposite is expected to be a promising anode material for lithium-ion batteries.
In second part, we design a new hybrid organic-inorganic polymer electrolyte, base on 4,4′-Methylene diphenyl diisocyanate (MDI), Jeffamine ED2003, and silica sources like GLYMO and MPEOPS. The solid polymer electrolyte(SPE) was measured the ion conductivity value of 1.11 × 10-4 S cm-1 at 30 °C. A maximum ion conductivity value of 1.86 × 10-3 S cm-1 is achieved for the gel polymer electrolytes(GPE) immersed in liquid electrolyte solution. And as the gel electrolyte, the test cell shows good cycling performance. The new hybrid polymer system hold promise for application in lithium ion batteries.
關鍵字(中) ★ 中孔洞碳材
★ 四氧化三錳
★ 鋰離子電池
★ 高分子電解質
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
謝誌 iii
目錄 v
圖目錄 ix
表目錄 xv
第一章 緒論 1
1-1 前言 1
1-2 蓄電池 2
1-3 鋰離子電池 4
1-4 研究目的 7
第二章 文獻回顧 10
2-1 中孔洞碳材 10
2-1-1 奈米模鑄法( Nanocasting )之機制 12
2-1-2 奈米模鑄法合成中孔洞碳材之發展 14
2-2 負極材料 20
2-2-1 碳材 20
2-2-2 非碳材 23
2-2-3 碳材-非碳材複合材料 24
2-2-3-1 鎳摻雜四氧化三錳修飾碳材的負極材料 26
2-3 高分子電解質 31
2-3-1 固態高分子電解質 33
2-3-2 膠態高分子電解質 41
2-3-3 鋰離子鹽類 47
2-3-4 有機矽高分子 52
第三章 實驗方法 53
3-1 藥品 53
3-2 負極材料製備 57
3-2-1 二維六角柱狀p6mm中孔洞矽材SBA-15合成 57
3-2-2 二維結構p6mm中孔洞管狀碳材CMK-5合成 57
3-2-3 含浸法合成Mn3O4@CMK-5負極材料 58
3-2-4 含浸法合成Ni摻雜Mn3O4@CMK-5負極材料 58
3-3 高分子電解質製備 59
3-3-1 固態高分子電解質製備 59
3-3-2 膠態高分子電解質製備 61
3-4 材料電化學測試 62
3-4-1 負極極片製作 62
3-4-2 硬幣型電池組裝 62
3-4-3 電池性能測試方法 64
3-4-3-1 定(變)電流充放電循環測試 64
3-4-3-2 循環伏安法(CV) 64
3-4-3-3 電化學阻抗分析(EIS) 64
3-5 實驗鑑定儀器 65
3-6 鑑定儀器之原理 67
3-6-1 同步輻射光束線 67
3-6-2 X射線粉末繞射(XRD) 70
3-6-3 氮氣等溫吸脫附曲線、表面積與孔洞性質鑑定 71
3-6-4 熱重分析儀(TGA) 75
3-6-5 穿透式電子顯微鏡(TEM) 76
3-6-6 掃描式電子顯微鏡(SEM) 78
3-6-7 示差掃描量熱儀(DSC) 79
3-6-8 傅立葉紅外線光譜儀(FTIR) 80
3-6-9 交流阻抗分析儀(AC-Impedance) 82
3-6-10 固態核磁共振儀(SSNMR) 83
3-6-11 線性掃描伏安法(LSV) 88
第四章 結果與討論 89
4-1 含浸法合成Ni摻雜Mn3O4@CMK-5負極材料 89
4-1-1 小角度X光繞射圖譜分析 89
4-1-2 大角度X光繞射圖譜分析 91
4-1-3 氮氣吸脫附結果分析 93
4-1-4 熱重分析 96
4-1-5 ICP-MS結果分析 98
4-1-6 SEM結果分析 99
4-1-7 TEM結果分析 102
4-1-8 XPS結果分析 112
4-1-9 拉曼光譜分析 114
4-1-10 電性分析 116
4-1-11 循環伏安法分析 124
4-1-12 交流阻抗分析 127
4-1-13 充放電後的SEM結果分析 132
4-2 固(膠)態高分子電解質EDMGM-X 134
4-2-1 熱重分析 134
4-2-2 示差掃描量熱儀分析 136
4-2-3 紅外線吸收光譜分析 139
4-2-4 SEM表面分析 143
4-2-5 交流阻抗儀之離子導電度分析 147
4-2-6 固態核磁共振光譜儀分析 149
4-2-6-1 13C CP/MAS NMR 150
4-2-6-2 29Si CP/MAS NMR 152
4-2-6-3 7Li 譜寬分析 154
4-2-6-4 7Li & 7Li-{1H} MAS NMR 160
4-2-7 線性掃描伏安法 163
4-2-8 膠態高分子電解質吸附之澎潤比測試 165
4-2-9 膠態高分子電解質之離子導電度測試 168
4-2-10 膠態高分子電解質之線性掃描伏安法分析 171
4-2-11 電池性能測試 172
第五章 結論 174
參考文獻 176
參考文獻 1. https://batteryuniversity.com/learn/article/secondary_batteries.
2. Gopalakrishnan, R.; Goutam, S.; Oliveira, L. M.; Timmermans, J.-M.; Omar, N.; Messagie, M.; Van den Bossche, P.; van Mierlo, J., A comprehensive study on rechargeable energy storage technologies. Journal of Electrochemical Energy Conversion and Storage 2016, 13 (4), 040801.
3. http://batteryuniversity.com.
4. Lamond, T.; Marsh, H., The surface properties of carbon—III the process of activation of carbons. Carbon 1964, 1 (3), 293-307.
5. Hu, Z.; Srinivasan, M. P.; Ni, Y., Preparation of mesoporous high‐surface‐area activated carbon. Advanced Materials 2000, 12 (1), 62-65.
6. Marsh, H.; Rand, B., The process of activation of carbons by gasification with CO2-II. The role of catalytic impurities. Carbon 1971, 9 (1), 63-77.
7. Tamai, H.; Kakii, T.; Hirota, Y.; Kumamoto, T.; Yasuda, H., Synthesis of extremely large mesoporous activated carbon and its unique adsorption for giant molecules. Chemistry of Materials 1996, 8 (2), 454-462.
8. Oya, A.; Yoshida, S.; Alcaniz-Monge, J.; Linares-Solano, A., Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt. Carbon 1995, 33 (8), 1085-1090.
9. Ozaki, J.; Endo, N.; Ohizumi, W.; Igarashi, K.; Nakahara, M.; Oya, A.; Yoshida, S.; Iizuka, T., Novel preparation method for the production of mesoporous carbon fiber from a polymer blend. Carbon 1997, 35 (7), 1031-1033.
10. Tamon, H.; Ishizaka, H.; Yamamoto, T.; Suzuki, T., Preparation of mesoporous carbon by freeze drying. Carbon 1999, 37 (12), 2049-2055.
11. Pekala, R., Organic aerogels from the polycondensation of resorcinol with formaldehyde. Journal of materials science 1989, 24 (9), 3221-3227.
12. Liang, C.; Hong, K.; Guiochon, G. A.; Mays, J. W.; Dai, S., Synthesis of a large‐scale highly ordered porous carbon film by self‐assembly of block copolymers. Angewandte Chemie International Edition 2004, 43 (43), 5785-5789.
13. Liang, C.; Dai, S., Synthesis of mesoporous carbon materials via enhanced hydrogen-bonding interaction. Journal of the American Chemical Society 2006, 128 (16), 5316-5317.
14. Knox, J. H.; Kaur, B.; Millward, G. R., Structure and performance of porous graphitic carbon in liquid chromatography. Journal of Chromatography A 1986, 352, 3-25.
15. Knox, J.; Unger, K.; Mueller, H., Prospects for carbon as packing material in high-performance liquid chromatography. Journal of Liquid Chromatography 1983, 6 (S1), 1-36.
16. Li, W.-C.; Lu, A.-H.; Weidenthaler, C.; Schüth, F., Hard-templating pathway to create mesoporous magnesium oxide. Chemistry of Materials 2004, 16 (26), 5676-5681.
17. Bonelli, B.; Esposito, S.; Freyria, F. S., Mesoporous Titania: Synthesis, properties and comparison with non-porous titania. In Titanium Dioxide, IntechOpen: 2017.
18. Lu, A. H.; Schüth, F., Nanocasting: a versatile strategy for creating nanostructured porous materials. Advanced Materials 2006, 18 (14), 1793-1805.
19. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered mesoporous carbons. Advanced Materials 2001, 13 (9), 677-681.
20. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
21. Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M., Silica‐based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
22. Solovyov, L. A.; Zaikovskii, V. I.; Shmakov, A. N.; Belousov, O. V.; Ryoo, R., Framework characterization of mesostructured carbon CMK-1 by X-ray powder diffraction and electron microscopy. The Journal of Physical Chemistry B 2002, 106 (47), 12198-12202.
23. Kleitz, F.; Choi, S. H.; Ryoo, R., Cubic Ia 3 d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
24. Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R., Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412 (6843), 169.
25. Zhang, F.; Meng, Y.; Gu, D.; Yan, Y.; Chen, Z.; Tu, B.; Zhao, D., An aqueous cooperative assembly route to synthesize ordered mesoporous carbons with controlled structures and morphology. Chemistry of Materials 2006, 18 (22), 5279-5288.
26. Zhou, H.; Zhu, S.; Hibino, M.; Honma, I.; Ichihara, M., Lithium storage in ordered mesoporous carbon (CMK‐3) with high reversible specific energy capacity and good cycling performance. Advanced Materials 2003, 15 (24), 2107-2111.
27. Cui, D.; Zheng, Z.; Peng, X.; Li, T.; Sun, T.; Yuan, L., Fluorine-doped SnO2 nanoparticles anchored on reduced graphene oxide as a high-performance lithium ion battery anode. Journal of Power Sources 2017, 362, 20-26.
28. Wang, M.-S.; Wang, Z.-Q.; Chen, Z.; Yang, Z.-L.; Tang, Z.-L.; Luo, H.-Y.; Huang, Y.; Li, X.; Xu, W., One dimensional and coaxial polyaniline@ tin dioxide@ multi-wall carbon nanotube as advanced conductive additive free anode for lithium ion battery. Chemical Engineering Journal 2018, 334, 162-171.
29. Qiu, H.; Wang, Y.; Liu, Y.; Li, D.; Zhu, X.; Ji, Q.; Quan, F.; Xia, Y., Synthesis of Co/Co3O4 nanoparticles embedded in porous carbon nanofibers for high performance lithium-ion battery anodes. Journal of Porous Materials 2017, 24 (2), 551-557.
30. Chen, L.; Wang, Y. Z., A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies 2010, 21 (1), 1-26.
31. Reina, G.; González-Domínguez, J. M.; Criado, A.; Vázquez, E.; Bianco, A.; Prato, M., Promises, facts and challenges for graphene in biomedical applications. Chemical Society Reviews 2017, 46 (15), 4400-4416.
32. De las Casas, C.; Li, W., A review of application of carbon nanotubes for lithium ion battery anode material. Journal of Power Sources 2012, 208, 74-85.
33. Lee, C.-S.; Hyun, Y., Synthesis and Characteristics of Carbon Nanofibers/Silicon Composites and Application to Anode Materials of Li Secondary Batteries. In Nanofiber Research-Reaching New Heights, IntechOpen: 2016.
34. Zhou, X.; Wan, L.-J.; Guo, Y.-G., Facile synthesis of MoS2@ CMK-3 nanocomposite as an improved anode material for lithium-ion batteries. Nanoscale 2012, 4 (19), 5868-5871.
35. Zareyee, D.; Ghandali, M. S.; Khalilzadeh, M. A., Sulfonated ordered nanoporous carbon (CMK-5-SO3H) as an efficient and highly recyclable catalyst for the silylation of alcohols and phenols with hexamethyldisilazane (HMDS). Catalysis Letters 2011, 141 (10), 1521-1525.
36. Wu, H.; Cui, Y., Designing nanostructured Si anodes for high energy lithium ion batteries. Nano today 2012, 7 (5), 414-429.
37. Zhu, X.; Zhu, Y.; Murali, S.; Stoller, M. D.; Ruoff, R. S., Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS nano 2011, 5 (4), 3333-3338.
38. Cheng, M.-Y.; Hwang, B.-J., Mesoporous carbon-encapsulated NiO nanocomposite negative electrode materials for high-rate Li-ion battery. Journal of Power Sources 2010, 195 (15), 4977-4983.
39. Wang, H.; Cui, L.-F.; Yang, Y.; Sanchez Casalongue, H.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H., Mn3O4−graphene hybrid as a high-capacity anode material for lithium ion batteries. Journal of the American Chemical Society 2010, 132 (40), 13978-13980.
40. Li, Z.; Liu, N.; Wang, X.; Wang, C.; Qi, Y.; Yin, L., Three-dimensional nanohybrids of Mn3O4/ordered mesoporous carbons for high performance anode materials for lithium-ion batteries. Journal of Materials Chemistry 2012, 22 (32), 16640-16648.
41. Zhang, D.; Li, G.; Fan, J.; Li, B.; Li, L., In Situ Synthesis of Mn3O4 Nanoparticles on Hollow Carbon Nanofiber as High‐Performance Lithium‐Ion Battery Anode. Chemistry–A European Journal 2018, 24 (38), 9632-9638.
42. Wang, Y.; Chen, T., Nonaqueous and template-free synthesis of Sb doped SnO2 microspheres and their application to lithium-ion battery anode. Electrochimica Acta 2009, 54 (13), 3510-3515.
43. El-Shinawi, H.; Böhm, M.; Leichtweiß, T.; Peppler, K.; Janek, J., A simple synthesis of nanostructured Cu-incorporated SnO2 phases with improved cycle performance for lithium ion batteries. Electrochemistry Communications 2013, 36, 33-37.
44. Ye, X.; Zhang, W.; Liu, Q.; Wang, S.; Yang, Y.; Wei, H., One-step synthesis of Ni-doped SnO2 nanospheres with enhanced lithium ion storage performance. New Journal of Chemistry 2015, 39 (1), 130-135.
45. Armand, M., Polymers with ionic conductivity. Advanced Materials 1990, 2 (6‐7), 278-286.
46. Scrosati, B.; Croce, F.; Panero, S., Progress in lithium polymer battery R&D. Journal of Power Sources 2001, 100 (1-2), 93-100.
47. Fauteux, D.; Massucco, A.; McLin, M.; Van Buren, M.; Shi, J., Lithium polymer electrolyte rechargeable battery. Electrochimica Acta 1995, 40 (13-14), 2185-2190.
48. Agrawal, R.; Pandey, G., Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. Journal of Physics D: Applied Physics 2008, 41 (22), 223001.
49. Quartarone, E.; Mustarelli, P., Electrolytes for solid-state lithium rechargeable batteries: recent advances and perspectives. Chemical Society Reviews 2011, 40 (5), 2525-2540.
50. Murata, K.; Izuchi, S.; Yoshihisa, Y., An overview of the research and development of solid polymer electrolyte batteries. Electrochimica Acta 2000, 45 (8-9), 1501-1508.
51. Fenton, D., Complexes of alkali metal ions with poly (ethylene oxide). polymer 1973, 14, 589.
52. Wright, P. V., Electrical conductivity in ionic complexes of poly (ethylene oxide). British polymer journal 1975, 7 (5), 319-327.
53. Armand, M.; Chabagno, J.; Duclot, M., Second international meeting on solid electrolytes. St Andrews, Scotland 1978, 20-22.
54. Berthier, C.; Gorecki, W.; Minier, M.; Armand, M.; Chabagno, J.; Rigaud, P., Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics 1983, 11 (1), 91-95.
55. Walker, C. W.; Salomon, M., Improvement of ionic conductivity in plasticized PEO‐based solid polymer electrolytes. Journal of the Electrochemical Society 1993, 140 (12), 3409-3412.
56. Wang, H.-L.; Kao, H.-M.; Digar, M.; Wen, T.-C., FTIR and solid state 13C NMR studies on the interaction of lithium cations with polyether poly (urethane urea). Macromolecules 2001, 34 (3), 529-537.
57. Young, N. P.; Devaux, D.; Khurana, R.; Coates, G. W.; Balsara, N. P., Investigating polypropylene-poly (ethylene oxide)-polypropylene triblock copolymers as solid polymer electrolytes for lithium batteries. Solid State Ionics 2014, 263, 87-94.
58. Çelik, S. Ü.; Bozkurt, A., Polymer electrolytes based on the doped comb-branched copolymers for Li-ion batteries. Solid State Ionics 2010, 181 (21-22), 987-993.
59. Pan, Y.-C.; Saikia, D.; Fang, J.; Tsai, L.-D.; Fey, G. T.; Kao, H.-M., A new organic–inorganic hybrid electrolyte based on polyacrylonitrile, polyether diamine and alkoxysilanes for lithium ion batteries: synthesis, structural properties, and electrochemical characterization. RSC Advances 2014, 4 (26), 13293-13303.
60. Zhang, Z.; Sherlock, D.; West, R.; West, R.; Amine, K.; Lyons, L. J., Cross-linked network polymer electrolytes based on a polysiloxane backbone with oligo (oxyethylene) side chains: synthesis and conductivity. Macromolecules 2003, 36 (24), 9176-9180.
61. Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H., Dendrite‐Free, High‐Rate, Long‐Life Lithium Metal Batteries with a 3D Cross‐Linked Network Polymer Electrolyte. Advanced Materials 2017, 29 (13), 1604460.
62. Weston, J.; Steele, B., Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes. Solid State Ionics 1982, 7 (1), 75-79.
63. Liu, S.; Wang, H.; Imanishi, N.; Zhang, T.; Hirano, A.; Takeda, Y.; Yamamoto, O.; Yang, J., Effect of co-doping nano-silica filler and N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide into polymer electrolyte on Li dendrite formation in Li/poly (ethylene oxide)-Li (CF3SO2)2N/Li. Journal of Power Sources 2011, 196 (18), 7681-7686.
64. Marcinek, M.; Bac, A.; Lipka, P.; Zalewska, A.; Żukowska, G.; Borkowska, R.; Wieczorek, W., Effect of filler surface group on ionic interactions in PEG− LiClO4− Al2O3 composite polyether electrolytes. The Journal of Physical Chemistry B 2000, 104 (47), 11088-11093.
65. Vignarooban, K.; Dissanayake, M.; Albinsson, I.; Mellander, B.-E., Effect of TiO2 nano-filler and EC plasticizer on electrical and thermal properties of poly (ethylene oxide)(PEO) based solid polymer electrolytes. Solid State Ionics 2014, 266, 25-28.
66. Do, N. S. T.; Schaetzl, D. M.; Dey, B.; Seabaugh, A. C.; Fullerton-Shirey, S. K., Influence of Fe2O3 nanofiller shape on the conductivity and thermal properties of solid polymer electrolytes: Nanorods versus nanospheres. The Journal of Physical Chemistry C 2012, 116 (40), 21216-21223.
67. Xi, J.; Miao, S.; Tang, X., Selective transporting of lithium ion by shape selective molecular sieves ZSM-5 in PEO-based composite polymer electrolyte. Macromolecules 2004, 37 (23), 8592-8598.
68. Xi, J.; Qiu, X.; Ma, X.; Cui, M.; Yang, J.; Tang, X.; Zhu, W.; Chen, L., Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery. Solid State Ionics 2005, 176 (13-14), 1249-1260.
69. Lin, D.; Liu, W.; Liu, Y.; Lee, H. R.; Hsu, P.-C.; Liu, K.; Cui, Y., High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly (ethylene oxide). Nano Letters 2015, 16 (1), 459-465.
70. Wu, G.; Lin, S.; Yang, C., Preparation and characterization of PVA/PAA membranes for solid polymer electrolytes. Journal of Membrane Science 2006, 275 (1-2), 127-133.
71. Dias, F. B.; Plomp, L.; Veldhuis, J. B., Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources 2000, 88 (2), 169-191.
72. Abraham, K.; Alamgir, M., Room temperature polymer electrolytes and batteries based on them. Solid State Ionics 1994, 70, 20-26.
73. Feuillade, G.; Perche, P., Ion-conductive macromolecular gels and membranes for solid lithium cells. Journal of Applied Electrochemistry 1975, 5 (1), 63-69.
74. Xu, K., Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews 2004, 104 (10), 4303-4418.
75. Marcinek, M.; Syzdek, J.; Marczewski, M.; Piszcz, M.; Niedzicki, L.; Kalita, M.; Plewa-Marczewska, A.; Bitner, A.; Wieczorek, P.; Trzeciak, T., Electrolytes for Li-ion transport–review. Solid State Ionics 2015, 276, 107-126.
76. Song, J.; Wang, Y.; Wan, C. C., Review of gel-type polymer electrolytes for lithium-ion batteries. Journal of Power Sources 1999, 77 (2), 183-197.
77. Kelly, I.; Owen, J.; Steele, B., Poly (ethylene oxide) electrolytes for operation at near room temperature. Journal of Power Sources 1985, 14 (1-3), 13-21.
78. Chintapalli, S.; Frech, R., Effect of plasticizers on high molecular weight PEO-LiCF3SO3 complexes. Solid State Ionics 1996, 86, 341-346.
79. Cha, E.; Macfarlane, D.; Forsyth, M.; Lee, C., Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer. Electrochimica Acta 2004, 50 (2-3), 335-338.
80. Watanabe, M.; Kanba, M.; Nagaoka, K.; Shinohara, I., Ionic conductivity of hybrid films based on polyacrylonitrile and their battery application. Journal of Applied Polymer Science 1982, 27 (11), 4191-4198.
81. Choe, H.; Carroll, B.; Pasquariello, D.; Abraham, K., Characterization of some polyacrylonitrile-based electrolytes. Chemistry of Materials 1997, 9 (1), 369-379.
82. Quartarone, E.; Tomasi, C.; Mustarelli, P.; Appetecchi, G.; Croce, F., Long-term structural stability of PMMA-based gel polymer electrolytes. Electrochimica Acta 1998, 43 (10-11), 1435-1439.
83. Liu, Y.; Lee, J.; Hong, L., Synthesis, characterization and electrochemical properties of poly (methyl methacrylate)-grafted-poly (vinylidene fluoride-hexafluoropropylene) gel electrolytes. Solid State Ionics 2002, 150 (3-4), 317-326.
84. Alamgir, M.; Abraham, K., Li ion conductive electrolytes based on poly (vinyl chloride). Journal of the Electrochemical Society 1993, 140 (6), L96-L97.
85. Choi, N.-S.; Park, J.-K., New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochimica Acta 2001, 46 (10-11), 1453-1459.
86. Tsuchida, E.; Ohno, H.; Tsunemi, K., Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I. Electrochimica Acta 1983, 28 (5), 591-595.
87. Boudin, F.; Andrieu, X.; Jehoulet, C.; Olsen, I., Microporous PVdF gel for lithium-ion batteries. Journal of Power Sources 1999, 81, 804-807.
88. Yang, C.; Jia, Z.; Guan, Z.; Wang, L., Polyvinylidene fluoride membrane by novel electrospinning system for separator of Li-ion batteries. Journal of Power Sources 2009, 189 (1), 716-720.
89. Pearson, R. G., Hard and soft acids and bases. Journal of the American Chemical Society 1963, 85 (22), 3533-3539.
90. Aurbach, D.; Zaban, A.; Schechter, A.; Ein‐Eli, Y.; Zinigrad, E.; Markovsky, B., The study of electrolyte solutions based on ethylene and diethyl carbonates for rechargeable Li batteries I. Li metal anodes. Journal of the Electrochemical Society 1995, 142 (9), 2873-2882.
91. Newman, G.; Francis, R.; Gaines, L.; Rao, B., Hazard investigations of LiClO4/dioxolane electrolyte. Journal of the Electrochemical Society 1980, 127 (9), 2025-2027.
92. Ue, M.; Mori, S., Mobility and ionic association of lithium salts in a propylene carbonate‐ethyl methyl carbonate mixed solvent. Journal of the Electrochemical Society 1995, 142 (8), 2577-2581.
93. Naoi, K.; Mori, M.; Naruoka, Y.; Lamanna, W. M.; Atanasoski, R., The surface film formed on a lithium metal electrode in a new imide electrolyte, lithium bis (perfluoroethylsulfonylimide)[LiN (C2F5SO2)2]. Journal of the Electrochemical Society 1999, 146 (2), 462-469.
94. Webber, A., Conductivity and Viscosity of Solutions of LiCF3SO3, Li (CF3SO2)2N, and Their Mixtures. Journal of the Electrochemical Society 1991, 138 (9), 2586-2590.
95. Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W., Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. Journal of the Electrochemical Society 2000, 147 (12), 4399-4407.
96. Kawamura, T.; Kimura, A.; Egashira, M.; Okada, S.; Yamaki, J.-I., Thermal stability of alkyl carbonate mixed-solvent electrolytes for lithium ion cells. Journal of Power Sources 2002, 104 (2), 260-264.
97. Sloop, S.; Pugh, J.; Wang, S.; Kerr, J.; Kinoshita, K., Chemical Reactivity of PF5 and LiPF6 in Ethylene Carbonate/Dimethyl Carbonate Solutions. Electrochemical and Solid-State Letters 2001, 4 (4), A42-A44.
98. Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R., Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. Journal of Power Sources 1997, 68 (2), 320-325.
99. Blonsky, P. M.; Shriver, D.; Austin, P.; Allcock, H. R., Polyphosphazene solid electrolytes. Journal of the American Chemical Society 1984, 106 (22), 6854-6855.
100. Groce, F.; Gerace, F.; Dautzemberg, G.; Passerini, S.; Appetecchi, G.; Scrosati, B., Synthesis and characterization of highly conducting gel electrolytes. Electrochimica Acta 1994, 39 (14), 2187-2194.
101. Vallée, A.; Besner, S.; Prud′Homme, J., Comparative study of poly (ethylene oxide) electrolytes made with LiN(CF3SO2)2, LiCF3SO3 and LiClO4: Thermal properties and conductivity behaviour. Electrochimica Acta 1992, 37 (9), 1579-1583.
102. Saikia, D.; Chang, Y.-J.; Fang, J.; Kao, H.-M., Highly conducting blend hybrid electrolytes based on amine ended block copolymers and organosilane with in-situ formed silica particles for lithium-ion batteries. Journal of Power Sources 2018, 390, 1-12.
103. Brunauer, S.; Deming, L. S.; Deming, W. E.; Teller, E., On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society 1940, 62 (7), 1723-1732.
104. Barrett, E. P.; Joyner, L. G.; Halenda, P. P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. Journal of the American Chemical Society 1951, 73 (1), 373-380.
105. Brown, S.; Greenbaum, S.; McLin, M.; Wintersgill, M.; Fontanella, J., Complex impedance, DSC and lithium-7 NMR studies of poly (propylene oxide) complexed with LiN (SO2CF3)2 and with LiAsF6. Solid State Ionics 1994, 67 (3-4), 257-262.
106. Panero, S.; Scrosati, B.; Greenbaum, S., Ionic conductivity and 7Li NMR study of poly (ethylene glycol) complexed with lithium salts. Electrochimica Acta 1992, 37 (9), 1533-1539.
107. Chung, S.; Jeffrey, K.; Stevens, J., A 7Li nuclear magnetic resonance study of LiCF3SO3 complexed in poly (propylene‐glycol). The Journal of chemical physics 1991, 94 (3), 1803-1811.
108. Kim, H.-D.; Kim, T.-W.; Park, H. J.; Jeong, K.-E.; Chae, H.-J.; Jeong, S.-Y.; Lee, C.-H.; Kim, C.-U., Hydrogen production via the aqueous phase reforming of ethylene glycol over platinum-supported ordered mesoporous carbon catalysts: Effect of structure and framework-configuration. International Journal of Hydrogen Energy 2012, 37 (17), 12187-12197.
109. Hassan, M. F.; Rahman, M. M.; Guo, Z.; Chen, Z.; Liu, H., SnO2–NiO–C nanocomposite as a high capacity anode material for lithium-ion batteries. Journal of Materials Chemistry 2010, 20 (43), 9707-9712.
110. Sambandam, B.; Soundharrajan, V.; Song, J.; Kim, S.; Jo, J.; Tung, D. P.; Kim, S.; Mathew, V.; Kim, J., A sponge network-shaped Mn3O4/C anode derived from a simple, one-pot metal organic framework-combustion technique for improved lithium ion storage. Inorganic Chemistry Frontiers 2016, 3 (12), 1609-1615.
111. John, N.; Thomas, P.; Divya, K.; Abraham, K., Enhanced room temperature gas sensing of aligned Mn3O4 nanorod assemblies functionalized by aluminum anodic membranes. Nanotechnology 2018, 29 (33), 335503.
112. Qiao, H.; Xia, Z.; Liu, Y.; Cui, R.; Fei, Y.; Cai, Y.; Wei, Q.; Yao, Q.; Qiao, Q., Sonochemical synthesis and high lithium storage properties of ordered Co/CMK-3 nanocomposites. Applied Surface Science 2017, 400, 492-497.
113. Ni, D.; Sun, W.; Xie, L.; Fan, Q.; Wang, Z.; Sun, K., Bismuth oxyfluoride@ CMK-3 nanocomposite as cathode for lithium ion batteries. Journal of Power Sources 2018, 374, 166-174.
114. Srinivasan, N.; Mitra, S.; Bandyopadhyaya, R., Improved electrochemical performance of SnO2–mesoporous carbon hybrid as a negative electrode for lithium ion battery applications. Physical Chemistry Chemical Physics 2014, 16 (14), 6630-6640.
115. Park, S.-H.; Lee, W.-J., Hierarchically mesoporous carbon nanofiber/Mn3O4 coaxial nanocables as anodes in lithium ion batteries. Journal of Power Sources 2015, 281, 301-309.
116. Park, S.-K.; Jin, A.; Yu, S.-H.; Ha, J.; Jang, B.; Bong, S.; Woo, S.; Sung, Y.-E.; Piao, Y., In situ hydrothermal synthesis of Mn3O4 nanoparticles on nitrogen-doped graphene as high-performance anode materials for lithium ion batteries. Electrochimica Acta 2014, 120, 452-459.
117. Gao, J.; Lowe, M. A.; Abruna, H. D., Spongelike nanosized Mn3O4 as a high-capacity anode material for rechargeable lithium batteries. Chemistry of Materials 2011, 23 (13), 3223-3227.
118. Wang, J.-G.; Jin, D.; Zhou, R.; Li, X.; Liu, X.-r.; Shen, C.; Xie, K.; Li, B.; Kang, F.; Wei, B., Highly flexible graphene/Mn3O4 nanocomposite membrane as advanced anodes for Li-ion batteries. ACS nano 2016, 10 (6), 6227-6234.
119. Varapragasam, S. J.; Balasanthiran, C.; Gurung, A.; Qiao, Q.; Rioux, R. M.; Hoefelmeyer, J. D., Kirkendall growth of hollow Mn3O4 nanoparticles upon galvanic reaction of MnO with Cu2+ and evaluation as anode for lithium-ion batteries. The Journal of Physical Chemistry C 2017, 121 (21), 11089-11099.
120. Lavoie, N.; Malenfant, P. R.; Courtel, F. M.; Abu-Lebdeh, Y.; Davidson, I. J., High gravimetric capacity and long cycle life in Mn3O4/graphene platelet/LiCMC composite lithium-ion battery anodes. Journal of Power Sources 2012, 213, 249-254.
121. Wang, N.; Yue, J.; Chen, L.; Qian, Y.; Yang, J., Hydrogenated TiO2 branches coated Mn3O4 nanorods as an advanced anode material for lithium ion batteries. ACS applied materials & interfaces 2015, 7 (19), 10348-10355.
122. Jannasch, P., Phase behavior and ion conductivity of electrolytes based on aggregating combshaped polyethers. Electrochimica Acta 2001, 46 (10-11), 1641-1649.
123. Bloise, A.; Tambelli, C.; Franco, R.; Donoso, J.; Magon, C.; Souza, M.; Rosario, A.; Pereira, E., Nuclear magnetic resonance study of PEO-based composite polymer electrolytes. Electrochimica Acta 2001, 46 (10-11), 1571-1579.
124. Donoso, J. P.; Bonagamba, T. J.; Panepucci, H. C.; Oliveira, L. N. d.; Gorecki, W.; Berthier, C.; Armand, M., Nuclear magnetic relaxation study of poly (ethylene oxide)–lithium salt based electrolytes. The Journal of chemical physics 1993, 98 (12), 10026-10036.
125. Mustarelli, P.; Capiglia, C.; Quartarone, E.; Tomasi, C.; Ferloni, P.; Linati, L., Cation dynamics and relaxation in nanoscale polymer electrolytes: A 7 Li NMR study. Physical Review B 1999, 60 (10), 7228.
126. Subramania, A.; Sundaram, N. K.; Priya, A. R.; Gangadharan, R.; Vasudevan, T., Preparation of a microporous gel polymer electrolyte with a novel preferential polymer dissolution process for Li‐ion batteries. Journal of Applied Polymer Science 2005, 98 (5), 1891-1896.
127. Li, W.; Yang, M.; Yuan, M.; Tang, Z.; Zhang, J., Dual‐phase polymer electrolytes based on blending poly (MMA‐g‐NBR) and PMMA. Journal of Applied Polymer Science 2007, 106 (5), 3084-3090.
指導教授 高憲明(Hsien-Ming Kao) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明