博碩士論文 106223020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:3.145.84.112
姓名 陳建豪(Chien-Hao Chen)  查詢紙本館藏   畢業系所 化學學系
論文名稱 以雙重震盪搭配超音波輔助基質固相分散萃取法快速檢測魚體中 BTRs 與 BTs 的殘留
相關論文
★ 以質譜技術探討非共價鍵結蛋白質聚合物之結構★ 以液相層析質譜儀檢測水樣與生物檢體中 全氟界面活性劑之濃度
★ 利用液相層析串聯質譜技術檢測水環境中藥物殘留物之方法開發與應用★ 直鏈式烷基苯基二甲基銨鹽類陽離子型界面活性劑在水環境中微量檢測方法的研究
★ 芳香族磺酸鹽類有機污染物在水環境中的分析與研究★ 以固相萃取及氣相層析質譜儀對水環境中壬基苯酚類 持久性有機污染物之分析與研究
★ 以固相萃取法及氣相層析質譜儀對水環境中動情激素類有機污染物之分析與研究★ 利用熱裂解直接高溫衍生化法快速分析直鏈式烷基三甲基銨鹽之方法建立與探討
★ 利用感應偶合電漿質譜儀檢測半導體製程用化學品中微量金屬不純物之分析研究★ 應用毛細管電泳間接偵測方法分離四級銨鹽界面活性劑
★ 利用毛細管電泳結合線上濃縮方法分離奈磺酸鹽之機制探討★ 快速分析水環境中醫療藥品殘留物之研究與探討
★ 以毛細管電泳法與電灑游離質譜法探討內包錯合物之研究★ 以氣相及液相層析質譜儀分析具荷爾蒙效應物質之方法開發
★ 以離子配對高效液相層析儀檢測螢光增白劑在不同基質中之研究★ 以氣相層析質譜儀檢測具荷爾蒙效應添加劑之方法開發與研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 苯并三唑類 (Benzotriazoles, BTRs) 與苯并噻唑類 (Benzothiazoles, BTs) 被歸納為高產量的新興汙染物,近年來廣泛使用於工業生產與家庭用品中,其對環境有高暴露的風險。當進入水環境體系,有可能透過食物鏈生物放大效應累積於動物體內,進而危害人類健康。因此有必要開發出一套快速又方便的檢驗方法來檢測生物檢體中 BTRs 與 BTs 的殘留。
本研究前處理方法使用新開發的雙重震盪搭配超音波輔助基質固相分散 (Double vortex-ultrasound assisted matrix solid-phase dispersion ,簡稱 DVUA-MSPD) 萃取法,分析儀器使用超高效液相層析搭配電噴灑串聯飛行時間質譜儀 (UHPLC-ESI-qTOF-MS) ,進行定性與定量檢測。
本研究使用實驗設計中的 Multilevel categoric design 與 Box-Behnken design 搭配變異數分析 (Analysis of variance, ANOVA) 進行 DVUA-MSPD 萃取法的最佳化條件探討。萃取條件篩選與最佳化的結果為:取 0.5 g 金目鱸魚魚體粉末與 1 g 矽酸鎂震盪 1 分鐘,加入 10 mL 超純水,在 63 ℃ 下超音波 10 分鐘,接著加入 10 mL 乙酸乙酯與 1.3 g 無水硫酸鈉,震盪 10 分鐘後,以 2000 rpm 離心 10 分鐘。取出 5 mL 上層清液,以 13 mm 0.22 µm PTFE 疏水過濾頭進行過濾,吹氮濃縮到乾,並且以 50 μL 的甲醇回溶,最後進樣 2 µL 到 UHPLC-ESI-qTOF-MS 進行分析。
5 種 BTRs 與 2 種 BTs 的方法定量極限介於 0.15-2 ng/g ;在 5-500 ng/g 的濃度範圍內,檢量線 R2 值都在 0.9964 以上,呈現良好的線性關係;在 Intra-day 與 Inter-day 的萃取回收率介於 70 到 93 % ,相對標準偏差都小於 10 % ,表示此方法有良好的準確度與精密度。在四種市售魚體樣品中都有檢測到 BTRs 與 BTs 不同濃度的殘留,其中 BTRs 殘留的濃度介於 n.d.-71.43 ng/g , BTs 殘留的濃度則介於 n.d.-26.07 ng/g 。
摘要(英) Benzotriazoles (BTRs) and benzothiazoles (BTs) are classified as high production volume contaminants of emerging concern with a broad range of applications in industry and household products in recent years. High production may indicate high exposure to environment. When they enter the aquatic ecosystems, they have potential to be accumulated in animals via biomagnification in the food chain and further jeopardize human health. Hence it is necessary to develop a fast and convenient method to determine BTRs and BTs in biota samples.
This study used a newly developed pretreatment method, called double vortex-ultrasound assisted matrix solid-phase dispersion (DVUA-MSPD) extraction, coupled with UHPLC-ESI-qTOF-MS for qualitative and quantitative detection.
The parameters of DVUA-MSPD extraction were screened by multilevel categoric design firstly, and then optimized by Box-Behnken design relied on analysis of variance (ANOVA). The screening and optimal conditions of DVUA-MSPD were: weighting 0.5 g fish powder and 1 g florisil into a glass centrifuge tube, homogenized by mechanical vortex-blending for 1 minute. Ultrapure water (10 mL) was added and sonicated in an ultrasonic bath for 10 minutes at 63 ℃. Then, 10 mL ethyl acetate and 1.3 g sodium sulfate anhydrate were added and vortexed for 10 minutes followed by centrifugation at 2000 rpm for 10 minutes. After that, a 5 mL aliquot of the supernatant was collected and filtered through a 0.22 μm PTFE hydrophobic syringe filter. Dried under nitrogen and then reconstituted with 50 μL methanol. Finally, a 2 μL aliquot was injected into the UHPLC-ESI- qTOF-MS for analysis.
The method quantification limits of five BTRs and two BTs ranged from 0.15 to 2 ng/g. Excellent linearities (coefficient of determination (R2) greater than 0.9964) were found for each target analyte in the six-level calibration standard curves, and the ranges were 5-500 ng/g. High precisions for both intra- and inter-day analysis were all below 10 %. High trueness (or mean extraction recovery) varied from 70 to 93%. The DVUA-MSPD combined with UHPLC-qTOF-MS was successfully applied to determine BTRs and BTs in marketed fish samples, and the total concentrations ranged from n.d. to 71.43 ng/g for BTRs, and from n.d. to 26.07 ng/g for BTs.
關鍵字(中) ★ 苯并三唑類
★ 苯并噻唑類
★ 生物檢體分析
★ 雙重震盪搭配超音波輔助基質固相分散萃取法
★ 超高效液相層析搭配電噴灑串聯飛行時間質譜儀
關鍵字(英) ★ Benzotriazoles
★ Benzothiazoles
★ Biota analysis
★ DVUA-MSPD
★ UHPLC-ESI-qTOF-MS
論文目次 摘要 i
Abstract iii
謝誌 v
目錄 vii
圖目錄 xi
表目錄 xiii
第一章 前言 1
1-1 新興汙染物 1
1-2 研究目標 3
第二章 文獻回顧 5
2-1 苯并三唑類 (Benzotriazoles, BTRs) 5
2-1-1 結構與性質 5
2-1-2 用途 7
2-1-3 毒性探討 7
2-1-4 環流分布 11
2-2 苯并噻唑類 (Benzothiazoles, BTs) 11
2-2-1 結構與性質 11
2-2-2 用途 12
2-2-3 毒性探討 13
2-2-4 環流分布 15
2-3 相關法規與文獻 16
2-4 分析儀器 18
2-4-1 超高效液相層析儀 18
2-4-1-1 Poroshell 120 管柱 20
2-4-2 四極桿飛行時間串聯式質譜儀 20
2-5 基質固相分散萃取法 21
2-5-1 前言 21
2-5-2 原理與流程 21
2-6 雙重震盪搭配超音波輔助基質固相分散萃取法 23
2-6-1 原理與流程 23
2-6-2 超音波萃取法 24
2-6-3 固體支持物 26
2-7 實驗設計 27
2-7-1 簡介 27
2-7-2 應用 28
2-8 脂質定量分析 29
第三章 實驗步驟與樣品分析 31
3-1 實驗藥品與設備 31
3-1-1 實驗藥品 31
3-1-2 儀器設備 34
3-2 實驗步驟 35
3-2-1 標準品的配製 35
3-2-2 UHPLC 參數設定 36
3-2-3 qTOF-MS 參數設定 37
3-2-4 質荷比校正 38
3-2-5 DVUA-MSPD 萃取法實驗步驟 39
3-2-6 空白魚體粉末的淨化 40
3-2-7 生物檢體採集 41
3-2-8 脂質定量分析實驗步驟 42
第四章 結果與討論 43
4-1 分析儀器對待測物標準品與內標準品的測定 43
4-1-1 待測物標準品與內標準品的層析圖 43
4-1-2 待測物標準品的質譜圖 45
4-2 DVUA-MSPD 萃取法條件探討 47
4-2-1 Multilevel categoric design 47
4-2-1-1 分析 49
4-2-1-2 殘差分布圖 51
4-2-1-3 種類探討 53
4-2-2 Box-Behnken design 55
4-2-2-1 分析 57
4-2-2-2 殘差分布圖 59
4-2-2-3 數量探討 61
4-2-3 實驗設計條件探討結果 62
4-3 方法偵測極限與檢量線 63
4-3-1 Mandel’s fitting test 64
4-3-2 Lack-of-Fit test 66
4-4 方法準確度與精密度 68
4-5 真實樣品的檢測 69
4-6 前處理方法比較 74
第五章 結論 77
第六章 參考文獻 79
附錄 89
參考文獻  台灣質譜學會,質譜分析技術原理與應用,2015。
 楊珺堯,非熱超音波技術在食品萃取與發酵製程上之應用,農林學報 2017;65(3):125-135.
 Asheim, J.; Vike-Jonas, K.; Gonzalez, S. V.; Lierhagen, S.; Venkatraman, V.; Veivag, I. S.; Snilsberg, B.; Flaten, T. P.; Asimakopoulos, A. G.. Benzotriazoles, benzothiazoles and trace elements in an urban road setting in Trondheim, Norway: Re-visiting the chemical markers of traffic pollution. Science of the Total Environment 2019;649:703-11.
 Asimakopoulos, A. G.; Ajibola, A.; Kannan, K.; Thomaidis, N. S.. Occurrence and removal efficiencies of benzotriazoles and benzothiazoles in a wastewater treatment plant in Greece. Science of the Total Environment 2013;452-453:163-71.
 Barker S. A.; Long, A. R.; Short C. R.. Isolation of drug residues from tissues by solid phase dispersion. Journal of Chromatography A 1989;475(2):353-61.
 Barker, S. A.. Matrix solid phase dispersion (MSPD). Journal of Biochemical and Biophysical Methods 2007;70(2):151-62.
 Breedveld, G. D.; Roger, R.; Hem, L.; Sparrevik, M.. Triazoles in the terrestrial environment -Final report. NGI report no. 20001103-1. 2002.
 Cancilla, D. A.; Holtkamp, A.; Matassa, L.; Fang, X.. Isolation and characterization of Microtox®‐active components from aircraft de‐icing/anti‐icing fluids. Environmental Toxicology and Chemistry 1997;16(3):430-4.
 Chemat, F.; Zill e, H.; Khan, M. K.. Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry 2011;18(4):813-35.
 Chipinda, I.; Zhang, X. D.; Simoyi, R. H.; Siegel, P. D.. Mercaptobenzothiazole allergenicity-role of the thiol group. Cutaneous and Ocular Toxicology 2008;27(2):103-16.
 Chung, K. H.-Y.; Lin, Y.-C.; Lin, A. Y.-C.. The persistence and photostabilizing characteristics of benzotriazole and 5-methyl-1H-benzotriazole reduce the photochemical behavior of common photosensitizers and organic compounds in aqueous environments. Environmental Science and Pollution Research 2017;25(6):5911-20.
 Cornell, J. S.; Pillard, D. A.; Hernandez, M. T.. Comparative measures of the toxicity of component chemicals in aircraft deicing fluid. Environmental Toxicology and Chemistry 2009;19:1465–72.
 Cressier, D.; Prouillac, C.; Hernandez, P.; Amourette, C.; Diserbo, M.; Lion, C.; Rima, G.. Synthesis, antioxidant properties and radioprotective effects of new benzothiazoles and thiadiazoles. Bioorganic and Medicinal Chemistry 2009;17(14):5275-84.
 Davis, L. N.; Santodonato, J.; Howard, P. H.; Saxena, J.. Investigation of selected potential environmental contaminants: benzotriazoles. Final report prepared for office of toxic substances, U.S. Environmental Protection Agency, Washington, D.C. 20460, 1977.
 DECOS (2000) 1,2,3-Benzotriazole. The Hague: Health Council of the Netherlands, 2000; publication no. 2000/14OSH.
 De Wever, H.; Verachtert, H.; Besse, P.. Microbial transformations of 2-substituted benzothiazoles. Applied Microbiology and Biotechnology 2001;57(5-6):620-5.
 Esplugas, S.; Bila, D. M.; Krause, L. G.; Dezotti, M.. Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. Journal of Hazardous Materials 2007;149(3):631-42.
 Esteban, S.; Gorga, M.; Petrovic, M.; Gonzalez-Alonso, S.; Barcelo, D.; Valcarcel, Y.. Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. Science of the Total Environment 2014;466-467:939-51.
 Farré, M. l.; Pérez, S.; Kantiani, L.; Barceló, D.. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. Trends in Analytical Chemistry 2008;27(11):991-1007.
 Field, J. A.; Johnson, C. A.; Rose, J. B.. What is “emerging”? Environmental Science and Technology 2006;40(23):7105.
 Fischer, K.; Fries, E.; Korner, W.; Schmalz, C.; Zwiener, C.. New developments in the trace analysis of organic water pollutants. Applied Microbiology and Biotechnology 2012;94(1):11-28.
 Fries, E.; Gocht, T.; Klasmeier, J.. Occurrence and distribution of benzothiazole in the Schwarzbach watershed (Germany). Journal of Environmental Monitoring 2011;13(10):2838-43.
 Ginsberg, G.; Toal, B.; Kurland, T.. Benzothiazole toxicity assessment in support of synthetic turf field human health risk assessment. Journal of Toxicology and Environmental Health, Part A 2011;74(17):1175-83.
 Harris, C. A.; Routledge, E.; Schaffner, C.; Brian, J. V.; Giger, W.; Sumpter, J. P.. Benzotriazole is antiestrogenic in vitro but not in vivo. Environmental Toxicology and Chemistry 2007;26:2367-72.
 Hart, D. S.; Davis, L. C.; Erickson, L. E.; Callender, T. M.. Sorption and partitioning parameters of benzotriazole compounds. Microchemical Journal 2004;77(1):9-17.
 He, G.; Zhao, B.; Denison, M. S.. Identification of benzothiazole derivatives and polycyclic aromatic hydrocarbons as aryl hydrocarbon receptor agonists present in tire extracts. Environmental Toxicology and Chemistry 2011;30(8):1915-25.
 Hem, L. J.; Hartnik, T.; Roseth, R.; Breedveld, G. D.. Photochemical degradation of benzotriazole. Journal of Environmental Science and Health, Part A 2003;38(3):471-81.
 Herrero, P.; Borrull, F.; Marce, R. M.; Pocurull, E.. A pressurised hot water extraction and liquid chromatography-high resolution mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. Journal of Chromatography A 2014a;1355:53-60.
 Herrero, P.; Borrull, F.; Pocurull, E.; Marce, R. M.. Efficient tandem solid-phase extraction and liquid chromatography-triple quadrupole mass spectrometry method to determine polar benzotriazole, benzothiazole and benzenesulfonamide contaminants in environmental water samples. Journal of Chromatography A 2013;1309:22-32.
 Herrero, P.; Borrull, F.; Pocurull, E.; Marce, R. M.. A quick, easy, cheap, effective, rugged and safe extraction method followed by liquid chromatography-(Orbitrap) high resolution mass spectrometry to determine benzotriazole, benzothiazole and benzenesulfonamide derivates in sewage sludge. Journal of Chromatography A 2014b;1339:34-41.
 Herrero, P.; Borrull, F.; Pocurull, E.; Marce, R. M.. An overview of analytical methods and occurrence of benzotriazoles, benzothiazoles and benzenesulfonamides in the environment. Trends in Analytical Chemistry 2014c;62:46-55.
 Hollingsworth, J.; Sierra-Alvarez, R.; Zhou, M.; Ogden, K. L.; Field, J. A.. Anaerobic biodegradability and methanogenic toxicity of key constituents in copper chemical mechanical planarization effluents of the semiconductor industry. Chemosphere 2005;59(9):1219-28.
 Hornung, M. W.; Kosian, P. A.; Haselman, J. T.; Korte, J. J.; Challis, K.; Macherla, C.; Nevalainen, E.; Degitz, S. J.. In vitro, ex vivo, and in vivo determination of thyroid hormone modulating activity of benzothiazoles. Toxicological Sciences 2015;146(2):254-64.
 Ivanovs, K.; Blumberga, D.. Extraction of fish oil using green extraction methods: a short review. Energy Procedia 2017;128:477–83.
 Janna, H.; Scrimshaw, M. D.; Williams, R. J.; Churchley, J.; Sumpter, J. P.. From dishwasher to tap? Xenobiotic substances benzotriazole and tolyltriazole in the environment. Environmental Science and Technology 2011;45(9):3858-64.
 Kadar, E.; Dashfield, S.; Hutchinson, T. H.. Developmental toxicity of benzotriazole in the protochordate Ciona intestinalis (Chordata, Ascidiae). Analytical and Bioanalytical Chemistry 2010;396(2):641-7.
 Kiss, A.; Fries, E.. Occurrence of benzotriazoles in the rivers Main, Hengstbach, and Hegbach (Germany). Environmental Science and Pollution Research 2009;16(6):702-10.
 Lai, W. W.-P.; Lin, Y.-C.; Wang, Y.-H.; Guo, Y. L.; Lin, A. Y.-C.. Occurrence of emerging contaminants in aquaculture waters: Cross-contamination between aquaculture systems and surrounding waters. Water, Air and Soil Pollution 2018;229(8).
 Leczynski, B.. Data collection and development on high production volume (HPV) chemicals. Environmental Protection Agency 2000;65:81686-98.
 Liao, C.; Kim, U. J.; Kannan, K.. A review of environmental occurrence, fate, exposure, and toxicity of benzothiazoles. Environmental Science and Technology 2018;52(9):5007-26.
 McNeill, K. S.; Cancilla, D. A.. Detection of triazole deicing additives in soil samples from airports with low, mid, and large volume aircraft deicing activities. Bulletin of Environmental Contamination and Toxicology 2009;82(3):265-9.
 Narenderan, S. T.; Meyyanathan, S. N.; Karri, V.. Experimental design in pesticide extraction methods: A review. Food Chemistry 2019;289:384-95.
 Nika, M. C.; Bletsou, A. A.; Koumaki, E.; Noutsopoulos, C.; Mamais, D.; Stasinakis, A. S.; Thomaidis, N. S.. Chlorination of benzothiazoles and benzotriazoles and transformation products identification by LC-HR-MS/MS. Journal of hazardous materials 2017;323(Pt A):400-13.
 Pillard, D. A.; Cornell, J. S.; DuFresne, D. L.; Hernandez, M. T.. Toxicity of benzotriazole and benzotriazole derivatives to three aquatic species. Water Research 2001;35(2):557-60.
 Prouillac, C.; Vicendo, P.; Garrigues, J. C.; Poteau, R.; Rima, G.. Evaluation of new thiadiazoles and benzothiazoles as potential radioprotectors: free radical scavenging activity in vitro and theoretical studies (QSAR, DFT). Free Radical Biology and Medicine 2009;46(8):1139-48.
 Qi, B.; Chen, L.; Wang J.. Composition analysis of cephalosporin intermediate plant effluent and preliminary identification of major organic pollutants. Chinese Journal of Environmental Engineering 2014;8(12).
 Ramalhosa, M. J.; Paíga, P.; Morais, S.; Rui Alves, M.; Delerue-Matos, C.; Oliveira M. B. P. P.. Lipid content of frozen fish: Comparison of different extraction methods and variability during freezing storage. Food Chemistry 2012;131(1):328-36.
 Reddy, C. M.; Quinn, J. G.. Environmental chemistry of benzothiazoles derived from rubber. Environmental Science and Technology 1997;31(10):2847–53.
 Reemtsma, T.. Determination of 2-substituted benzothiazoles of industrial use from water by liquid chromatography/electrospray ionization tandem mass spectrometry. Rapid Communication in Mass Spectrom 2000;14(17):1612-8.
 Reh, R.; Licha, T.; Geyer, T.; Nodler, K.; Sauter, M.. Occurrence and spatial distribution of organic micro-pollutants in a complex hydrogeological karst system during low flow and high flow periods, results of a two-year study. Science of The Total Environment 2013;443:438-45.
 Schlechtriem, C.; Fliedner, A.; Schäfers, C.. Determination of lipid content in fish samples from bioaccumulation studies: contributions to the revision of guideline OECD 305. Environmental Sciences Europe 2012;24(1).
 Speltini, A.; Sturini, M.; Maraschi, F.; Porta, A.; Profumo, A.. Fast low-pressurized microwave-assisted extraction of benzotriazole, benzothiazole and benezenesulfonamide compounds from soil samples. Talanta 2016;147:322-7.
 Tangtian, H.; Bo, L.; Wenhua, L.; Shin, P. K.; Wu, R. S.. Estrogenic potential of benzotriazole on marine medaka (Oryzias melastigma). Ecotoxicology and Environmental Safety 2012;80:327-32.
 Trabalon, L.; Nadal, M.; Borrull, F.; Pocurull, E.. Determination of benzothiazoles in seafood species by subcritical water extraction followed by solid-phase microextraction-gas chromatography-tandem mass spectrometry: estimating the dietary intake. Analytical and Bioanalytical Chemistry 2017;409(23):5513-22.
 Tu, X.; Chen, W.. A review on the recent progress in matrix solid phase dispersion. Molecules 2018;23(11):2767.
 Verheyen, V.; Cruickshank, A.; Wild, K.; Heaven, M. W.; McGee, R.; Watkins, M.; Nash, D.. Soluble, semivolatile phenol and nitrogen compounds in milk-processing wastewaters. Journal of Dairy Science 2009;92(7):3484-93.
 Wang, L.; Asimakopoulos, A. G.; Kannan, K.. Accumulation of 19 environmental phenolic and xenobiotic heterocyclic aromatic compounds in human adipose tissue. Environment International 2015;78:45-50.
 Wang, L.; Asimakopoulos, A. G.; Moon, H. B.; Nakata, H.; Kannan, K.. Benzotriazole, benzothiazole, and benzophenone compounds in indoor dust from the United States and East Asian countries. Environmental Science and Technology 2013;47(9):4752-9.
 Wick, A.; Fink, G.; Ternes, T. A.. Comparison of electrospray ionization and atmospheric pressure chemical ionization for multi-residue analysis of biocides, UV-filters and benzothiazoles in aqueous matrices and activated sludge by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 2010;1217(14):2088-103.
 Zeng, F.; Sherry, J. P.; Bols, N. C.. Evaluating the toxic potential of benzothiazoles with the rainbow trout cell lines, RTgill-W1 and RTL-W1. Chemosphere 2016;155:308-18.
 Zhang, J.; Zhang, X.; Wu, L.; Wang, T.; Zhao, J.; Zhang, Y.; Men, Z.; Mao, H.. Occurrence of benzothiazole and its derivates in tire wear, road dust, and roadside soil. Chemosphere 2018;201:310-7.
 Zhang, Z.; Ren, N.; Li, Y. F.; Kunisue, T.; Gao, D.; Kannan, K.. Determination of benzotriazole and benzophenone UV filters in sediment and sewage sludge. Environmental Science and Technology 2011;45(9):3909-16.
指導教授 丁望賢(Wang-Hsien Ding) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明