博碩士論文 106223067 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:57 、訪客IP:3.145.69.255
姓名 林雨柔(Yu-Rou Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 可溶性吡咯併吡咯二酮衍生物有機光電材料之開發
(Development of Soluble Diketopyrrolopyrrole Derivatives for Organic Optoelectronic Applications)
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-1以後開放)
摘要(中) 本論文主要可以分為有機薄膜電晶體 (OTFTs)、有機光伏打電池
(OPVs)、 電洞傳輸層 (HTL)的材料開發 。
本研究成功開發出兩個新型含不對稱碳鏈之吡咯併 吡咯二酮 單元
的 n 型有機薄膜電晶體材料,DPP’Q 10 (1) 與 DPP’Q 14 (2)。
Diketopyrrolopyrrole (DPP)單元 具有高的平面性及其有缺電子的性質和形成氫鍵的能力 導致其有很強的 π π stacking作用及分子內電荷轉移作用,為一良好之 OTFT的核心 。 本研究將以往 DPP核心上兩對稱的具支鏈的長 碳鏈改為不一樣的碳鏈,將其中一碳鏈改為直鏈的長碳鏈 ,期望能藉由兩長支鏈的立體障礙的降低,使此材料在成膜時有更佳的堆疊,進而改善薄膜的結晶性及元件的電性效能。
另一方面,也成功以 DPP為單元並利用微波加熱合成出一個六併
環新核心 BTI,其併環結構相較於 DPP單元具有更延伸的共軛長度,
未來會將此新核心應用於有機薄膜電晶體材料的開發中。
有機光伏打電池部分,以 CDT 為單元,開發出一新核心 雙聯
CDT的 BCDT 單元 ,並將此新核心分別接上末端 拉電子基團 為 羅丹
寧 Rh 與茚酮 IN 製備出兩 個新型 可溶性非 富勒烯 有機光伏打太
陽能電池材料 RhBCDT (3)、 INBCDT (4)。 預期以 多併環 噻吩為核心能有助於電荷轉移進而提高載子移動率 ,於多環的核心架構中引入分支的碳鏈以確保分子之溶解度,並避免元件製備成膜時分子之堆疊
分支的碳鏈以確保分子之溶解度,並避免元件製備成膜時分子之堆疊嚴重,嚴重,使元件效能有效提升使元件效能有效提升。
電洞傳輸層的部分,開發以吡咯併以吡咯併吡咯二酮吡咯二酮 (DPP)為核心之小分子材料,TPA-DPP-b8 (5),因核心具 N 之原子亦同時具拉電子基團,此材料之 HOMO/LUMO電位與其它常見之電洞傳輸層材料較不同,其HOMO可高達 -4.88 eV,期望應用於Pb-based 的鈣鈦礦太陽能電池中,能有效提升光電轉換效率。
摘要(英) A series of new organic optoelectronic materials were synthesized and characterized for organic thin film transistors (OTFTs), organic photovoltaic cells (OPVs), and hole transporting layer (HTL).
For n-type OTFTs, n-type small molecules, DPP’Q-10 (1; R= b-C20H41, C10H21) and DPP’Q-14 (2; R= b-C20H41, C14H29), were synthesized and characterized. DPP is a superior core for OTFT, since the planar core structure, electron deficient nature, and ability to form hydrogen bonds, resulting in strong π-π stacking interactions. Two new DPP-based small molecules, DPP’Q-10 (1) and DPP’Q-14 (2), with the asymmetrical side chains were developed. The replacement of bulky branching chains with linear ones should reduce the steric hindrance of the long alkyl chains, which might lead to the improvement of alkyl chain packing order, thin film crystallinity, and therefore, the charge mobilities.
On the other hand, a new bisthiophene-fused diketopyrrolopyrrole unit, BTI, was synthesized by microwave, which will be served as a new core in organic thin film transistors in the future.
For the organic photovoltaics, One CDT derivative, BCDT, was served as a central core and was end capped with electron withdrawing groups, such as rhodamine (Rh) or dicyanomethylene indanone (IN). Via knoevenagel condensation, two new materials RhBCDT (3) and INBCDT (4) were prepared.
For hole transporting layer materials, a DPP-based small molecular TPA-DPP-b8 (5) was synthesized, which will be tested in Pb-based perovskite solar cells for power conversion efficiency improvement.
iv
The optical and electrochemical properties (HOMO and LUMO) of these new materials were characterized by UV-vis and DPV. Thermal properties were investigated by DSC and TGA. Optoelectronic devices used these new developed small molecules are under optimization.
關鍵字(中) ★ 有機薄膜電晶體
★ 有機光伏打電池
★ 電洞傳輸層材料
★ 有機光電材料
★ 吡咯併吡咯二酮衍生物
關鍵字(英) ★ OTFT
★ OPV
★ HTLs
★  Diketopyrrolopyrrole Derivatives
論文目次 摘要 ............................................................................................................. i
Abstract .................................................................................................... iii
謝 誌 ..................................................................................................... iii
目 錄 ......................................................................................................... v
List of Figures ........................................................................................ xiii
List of Schemes ...................................................................................... xvi
List of Tables ......................................................................................... xix
附錄目錄 ................................................................................................... xx
第一章 緒論 ............................................................................................ 1
1 1 有機薄膜電晶體之前言 2
1 2 有機薄膜電晶體之概論 3
1 3 有機薄膜電晶體之元件結構 6
1 4 有機薄膜電晶體之運作原理 8
1 5 有機薄膜電晶體的應用 10
1-5-1 軟性顯示器 .................................................................... 11
1-5-2 無線射頻標籤 ................................................................ 12
1-5-3 氣體及生物感測器 ........................................................ 13
1 6 有機薄膜電晶體導電性質之基本公式及特性 13
1-6-1 載子移動率 (Mobility, μ) ............................................ 13
vi
1-6-2 開關電流比 (on / off current ratio) ............................ 15
1-6-3 起始電壓 (Threshold Voltage, VT) ............................. 15
1-7 有機半導體電荷傳遞機制 .............................................................................................................. 15
1-8 有機半導體分子載子移動率影響因素有機半導體分子載子移動率影響因素 ...................................................................... 18
1-8-1 分子設計 ........................................................................ 18
1-8-2 有機半導體分子結晶度 ................................................ 18
1-8-3 有機半導體分子排列模式............................................ 20
1--9 有機薄膜的製備方式有機薄膜的製備方式 .............................................................................................................................. 21
1-9-1 氣相沉積 ........................................................................ 21
1-9-2 液相沉積 ........................................................................ 22
1--10 有機有機薄膜電晶體薄膜電晶體材料材料 .......................................................................................................................... 25
1-10-1 P-type 有機薄膜電晶體材料 ..................................... 25
1-10-2 N-type 有機薄膜電晶體材料 ..................................... 28
1-10-3 Ambipolar 有機薄膜電晶體材料 .............................. 30
1--11 有機太陽能電池之前言有機太陽能電池之前言 .................................................................................................................. 32
1--12 有機太陽能電池之概論有機太陽能電池之概論 .................................................................................................................. 33
1--13 太陽能電池種類概述太陽能電池種類概述 .......................................................................................................................... 34
1-13-1 矽晶太陽能電池 .......................................................... 34
1-13-2 無機化合物半導體太陽能電池 ................................. 35
vii
1-13-3 有機太陽能電池 .......................................................... 36
1--14 有機光伏打電池之元件結構有機光伏打電池之元件結構 .................................................................................................. 37
1-14-1 雙層式異質接面 (Bilayer heterojunction, PHJ) ..... 38
1-14-2 體異質接面 (Bulk heterojunction, BHJ) ................. 38
1-14-3 串聯結構 ...................................................................... 38
1--15 有機光伏打電池之運作原理有機光伏打電池之運作原理 .................................................................................................. 39
1-15-1光激發 (Optical absorption) ...................................... 39
1-15-2 激子擴散與分離 (Exction diffusion and dissociation) ................................................................................................... 40
1-15-3 電荷傳輸 (Charge transfer) ..................................... 41
1-15-4 電荷收集 (Charge collection) ................................... 41
1--16 有機有機光伏打電池參數介紹光伏打電池參數介紹 .......................................................................................................... 42
1-16-1 J-V 曲線 ...................................................................... 43
1-16-2 短路電流 (Short circuit current, JSC) ...................... 44
1-16-3 開環電壓 (Open circuit voltage, VOC) ...................... 44
1-16-4 外部量子效率 (Eternal quantum efficiency, EQE) 45
1-16-5 填充因子 (Fill factor, FF) ......................................... 45
1-16-6 能量轉換效率 (Power conversion efficiency, η) ..... 45
1--17 有機光伏打電池材料有機光伏打電池材料 .......................................................................................................................... 46
1-17-1 P-type 有機光伏打材料 ............................................. 46
viii
1-17-2 N-type 有機光伏打材料 ............................................. 50
1--18 鈣鈦礦太陽能電池鈣鈦礦太陽能電池 .................................................................................................................................. 55
1-18-1 鈣鈦礦太陽能電池 ...................................................... 55
1-18-2 鈣鈦礦太陽能電池的組成.......................................... 55
1-18-3 工作原理 ...................................................................... 57
1--19 研究動機與目的研究動機與目的 .......................................................................................................................................... 58
1-19-1 N 型有機薄膜電晶體材料 ....................................... 58
1-19-2 有機光伏打材料 .......................................................... 60
1-19-3電洞傳輸層材料 ........................................................... 63
第二章 實驗部分 .................................................................................. 66
2-1 化合物名稱對照化合物名稱對照 .............................................................................................................................................. 67
2--2 實驗藥品實驗藥品 ...................................................................................................................................................................... 69
2-2-1 實驗所用之化學藥品 .................................................... 69
2-2-2 實驗所用之溶劑除水方式............................................ 71
2--3 實驗儀器實驗儀器 ...................................................................................................................................................................... 72
2-3-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR);Bruker AVANCE 300 / 500 MHz ........................... 72
2-3-2 高解析質譜儀 (High Resolution Mass Spectrometer, HRMS);JMS-700 HRMS ..................................................... 72
ix
2-3-3 紫外光 / 可見光吸收光譜 (Ultraviolet / Visible Spectro -Photometer);HITACHI U-3900 型 .................... 73
2-3-4 示差熱掃描卡計 (Differential Scanning Calorimeter, DSC);NETZSCH DSC 204 F1 ............................................ 73
2-3-5 熱重分析儀 (Thermal Gravimetric Analyer, TGA); Perkin Elmer TGA 7 .............................................................. 73
2-3-6 電化學裝置 (Electrochemical Analyzer / Work- station);HCH Instrumentent Model 621C ......................... 74
2--4 合成步驟合成步驟 ...................................................................................................................................................................... 75
2-4-1 3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP ) (6) 之合成 .................................................................. 75
2-4-2 2-(2-octyldodecyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-NH-b20 ) (7) 之合成 ................. 76
2-4-3 2-decyl-5-(2-octyldodecyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-b20-C10 ) (8) 之合成 .. 77
2-4-4 3,6-bis(5-bromothiophen-2-yl)-2-decyl-5-(2-octyldodecyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-b20-C10-Br) (9) 之合成 ...................................................................................... 78
2-4-5 2,2′-((5Z,5′Z)-5,5′-(2-decyl-5-(2-octyldodecyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diylidene)bis(thiophene-5,2(5H)-diylidene))dimalononitrile ( DPP’Q-10 ) (1)
x
之合成 ...................................................................................... 79
2-4-6 2-(2-octyldodecyl)-5-tetradecyl-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-b20-C14) (10) 之合成............................................................................................... 80
2-4-7 3,6-bis(5-bromothiophen-2-yl)-2-(2-octyldodecyl)-5-tetradecylpyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-b20-C10-Br) (11) 之合成 ............................................ 81
2-4-8 2,2′-((5Z,5′Z)-5,5′-(2-(2-octyldodecyl)-3,6-dioxo-5-tetradecyl-2,3,5,6-tetrahydropyrrolo[3,4-c]pyrrole-1,4-diylidene)bis(thiophene-5,2(5H)-diylidene))dimalononitrile ( DPP’Q-14) (2) 之合成 ................................................................................ 82
2-4-9 2,6-bis(tributylstannyl)dithieno[3,2-b:2′,3′-d]thiophene (13) 之合成 ...................................................................................... 83
2-4-10 2,5-Bis(tributylstannyl)thiophene (15) 之合成 ........ 85
2-4-11 2,6-bis(tributylstannyl)dithieno[3,2-b:2′,3′-d]thiophene (16) 之合成 ...................................................................................... 86
2-4-12 1-bromo-4-(hexadecyloxy)benzene (17) 之合成 ...... 87
2-4-13 [2,2′:5′,2′′:5′′,2′′′-quaterthiophene]-3,3′′′-diylbis(bis(4-(hexadecyloxy phenyl)methanol) (18) 之合成 .............................. 88
2-4-14 4,4,4′,4′-tetrakis(4-(hexadecyloxy phenyl-4H,4′H-2,2′-bi(cyclopenta[1,2-b:5,4-b′]dithiophene) (BCDT) (19) 之合成 ............................................................... 89
xi
2-4-15 4-15 4,4,4′,4′-tetrakis(4-(hexadecyloxy)phenyl)-4H,4′H-[2,2′-bi(cyclopenta[1,2-b:5,4-b′]dithiophene)]-6,6′-dicarbaldehyde (BCDT-CHO) (20) 之合成 .................................................... 90
2-4-16 2,2′-((4E,4′E)-4,4′-((4,4,4′,4′-tetrakis(4-(hexadecyloxy)phenyl)-4H,4′H-[2,2′-bi(cyclopenta[1,2-b:5,4-b′]dithiophene)]-6,6′-diyl)bis(methanylylidene))bis(3-ethyl-5-oxothiazolidine-4,2-diylidene))dimalononitrile (RhBCDT) (3) 之合成 .............. 91
2-4-17 Rhodanine (22) 之合成 .............................................. 92
2-4-18 2-(3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (23) 之合成 ...................................................................................... 93
2-4-19 2,2′-((2Z,2′Z)-((4,4,4′,4′-tetrakis(4-(hexadecyloxy)phenyl)-4H,4′H-[2,2′-bi(cyclopenta[1,2-b:5,4-b′]dithiophene)]-6,6′-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile (INBCDT) (4) 之合成 ............. 94
2-4-20 4-bromo-N,N-bis(4-methoxyphenyl)aniline (TPA) (24) 之合成 .............................................................................. 95
2-4-21 4-methoxy-N-(4-methoxyphenyl)-N-(4-(tributylstannyl)phenyl)aniline (TPA-SnBu3 ) (25) 之合成 .................................. 96
2-4-22 3,6-bis(5-bromothiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-b8-Br )(27) 之合成 97
2-4-23 3,6-bis(5-(4-(bis(4 methoxyphenyl)amino)phenyl)thiophen-2-yl)-2,5-bis(2-ethylhexyl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione (TPA-DPP-b8 ) (5) 之合成 .................................................... 98
xii
2-4-24 2,5-Bis(4-octyl-2-oxotetradecyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione ( DPP-C=O-b20) (30) 之合成 .......................................................................................... 99
2-4-25 2,9-Dibromo-4,11-bis(2-octyldodecyl) thieno[30,20:7,8]indolizino-[2,1-a]thieno[3,2-g]indolizine-7,14-dione ( BTI ) (32) ............................................................. 101
第三章 結果與討論 ............................................................................ 104
3-1 有機半導體材料之UV 光學性質探討 ................................................................ 105
3-2 有機半導體材料之電化學性質探討 .......................................................................... 112
3-3 有機半導體材料之穩定性探討 .......................................................................................... 117
第四章 結論 ........................................................................................ 121
參考文獻 ................................................................................................. 123
附 錄 ................................................................................................. 132
xiii
List of Figures
Figure 1--1 薄膜電晶體結構示意圖薄膜電晶體結構示意圖 .................................................................................................................. 6
Figure 1--2 常見有機場效電晶體之結構常見有機場效電晶體之結構 .................................................................................................. 7
Figure 1--3 OTFTs 運作原理運作原理 .................................................................................................................................. 9
Figure 1--4 有機薄膜電晶體相關應用產品有機薄膜電晶體相關應用產品 ................................................................................ 10
Figure 1--5 固態晶體與非規則性固體之載子傳遞機制固態晶體與非規則性固體之載子傳遞機制 ............................................ 16
Figure 1--6 (a) edge--on (b) 分子層間之有效載子傳遞分子層間之有效載子傳遞 (Hopping) ...... 17
Figure 1--7 (a) face--on (b) 分子排列垂直於電極的電子傳遞分子排列垂直於電極的電子傳遞 .................... 17
Figure 1--8 半導體分子間排列方式與電子傳遞關係示意圖半導體分子間排列方式與電子傳遞關係示意圖 ........................ 19
Figure 1--9 分子排列及其代表分子分子排列及其代表分子 .......................................................................................................... 20
Figure 1--10 真空蒸鍍法與氣相沉積法示意圖真空蒸鍍法與氣相沉積法示意圖.......................................................................... 22
Figure 1--11 溶液製程示意圖溶液製程示意圖 .............................................................................................................................. 23
Figure 1--12 Solution Shearing 製程示意圖與分子排列形態製程示意圖與分子排列形態 .................... 24
Figure 1--13 各類太陽能電池的效率變化圖各類太陽能電池的效率變化圖.............................................................................. 33
Figure 1--14 太陽能電池種類太陽能電池種類 .............................................................................................................................. 34
Figure 1--15 矽晶太陽能電池種類矽晶太陽能電池種類 .............................................................................................................. 34
Figure 1--16 CdTe 軟性太陽能電池軟性太陽能電池 ...................................................................................................... 35
Figure 1--17 有機太陽能電池有機太陽能電池 .............................................................................................................................. 36
Figure 1--18 太陽能電池的基本結構示意圖太陽能電池的基本結構示意圖.............................................................................. 37
xiv
Figure 1--19 有機太陽電池的有機太陽電池的典型結構示意圖典型結構示意圖.......................................................................... 37
Figure 1--20 光激發和激子生成示意圖光激發和激子生成示意圖 .................................................................................................. 40
Figure 1--21 激子擴散與分離激子擴散與分離示意圖示意圖 .......................................................................................................... 40
Figure 1--22 電荷傳輸電荷傳輸示意圖示意圖 .................................................................................................................................. 41
Figure 1--23 電荷收集電荷收集示意圖示意圖 .................................................................................................................................. 41
Figure 1--24 太陽能電池等效模組太陽能電池等效模組 .................................................................................................................. 42
Figure 1--25 太陽能電池特性曲線太陽能電池特性曲線 .................................................................................................................. 43
Figure 1--26 典型的典型的 Calamitic NFA 結構示意圖結構示意圖 .............................................................. 53
Figure 1--29 鈣鈦礦電池工作原理圖鈣鈦礦電池工作原理圖 .......................................................................................................... 57
Figure 3--1 DPPQ 系列系列之之 UV--vis 吸收光譜圖吸收光譜圖 ............................................................ 105
Figure 3--2 BCDT 及及 DCDT 系列分子系列分子 UV--vis 吸收光譜圖吸收光譜圖 ............ 107
Figure 3--3 BCDT 及及 DCDT 系列定量系列定量 UV--vis 吸收光譜圖吸收光譜圖 ............ 108
Figure 3--4 TPA--DPP--b8、、TPA--DTP--b8之之 UV--vis吸收光譜圖吸收光譜圖 .... 110
Figure 3--5 DPPQ 之之 DPV 示意圖示意圖 .................................................................................................... 112
Figure 3--6 DPP’Q 系列化合物之系列化合物之 HOMO/LUMO 能階圖能階圖 .................. 114
Figure 3--7 BCDT、、DCDT系列化合物之系列化合物之 HOMO/LUMO 能階圖能階圖 .................................................................................................................................................................................................................. 115
Figure 3--8 TPA--DPP--b8、、TPA--DTP--b8 之之 HOMO/LUMO 能階圖能階圖 .................................................................................................................................................................................................................. 116
Figure 3--9 DPPQ 系列化合物系列化合物之之 TGA 曲線圖曲線圖 ...................................................... 117
xv
Figure 3--10 BCDT、、DCDT 系列化合物系列化合物之之 TGA 曲線圖曲線圖........................ 118
Figure 3--11 TPA--DPP--b8 材料材料之之 TGA 曲線圖曲線圖 ........................................................ 119
Scheme 1 1 文獻上之有機半導體小分子材料 [P type] 26
Scheme 1 2 文獻上之有機半導體高分子材料 [P type] 27
Scheme 1 3 文獻上之有機半導體小分子材料 [N type] 29
Scheme 1 4 文獻上之有機半導體高分子材料 [N type] 30
Scheme 1 5 文獻上之有機半導體材料 [Ambipolar] 31
Scheme 1 6 Oligothiophene 有機光伏打材料 47
Scheme 1 8 Oligothiophene 有機光伏打材料 49
Scheme 1 9 富勒烯及其衍生物 50
Scheme 1 10 PDI 衍生物之 NFs 材料 52
Scheme 1 11 Calamitic type 電子受體材料 53
Scheme 1 12 高效能 NFs 材料 54
Scheme 1 13 (左 ) Spiro MeOTAD (右 ) PEDOT:PSS 結構 57
Scheme 1 14 文獻上之醌型 DPP 58
Scheme 1 15 文獻上之醌型 DPP 58
Scheme 1-16 PNDI2Y-DTD 與 NDI2T-DT 分子排列示意圖 59
Scheme 1 17 本論文設計之 N 型材料 60
Scheme 1 18 高效能 NFAs 材料 61
Scheme 1 19 文獻上之 rhodanine 衍生物 62
參考文獻 1. 江文彥 , 科學發展 . 2002; Vol. 359, p 68.
2. Chiang, C. K.; Druy, M. A.; Gau, S. C.; Heeger, A. J.; Louis, E. J.; MacDiarmid, A. G.; Park, Y. W.; Shirakawa, H. J. Am. Chem. Soc. 1978, 100, 1013.
3. 蕭如娟 , 科儀新知 , 1988, 9, 6, 65.
4. 曾志正 , 儲 三洋 , 科學月刊 , 1989, 第二十卷 , 第 1期 , 44.
5. Tsumura, A.; Koezuka, H.; Ando, T. Appl. Phys. Lett. 1986, 49, 1210.
6. Horowitz, G.; Fichou, D.; Peng, X.; Xu, Z.; Garnier, F. Solid State Commun. 1989, 72, 381.
7. Kelley, T. W.; Baude, P. F.; Gerlach, C.; Ender, D. E.; Muyres, D.; Haase, M. A.; Vogel, D. E.; Theiss, S. D. Chem. Mater. 2004, 16, 4413.
8. 陳勝禹 , 有機薄膜電晶體材料雙噻吩蒽之開發 . 國立中央大學化
學研究所碩士論文 , 2006
9. Facchetti, A.; Yoon, H.; Marks, T. J. Adv. Mater. (Weinheim, Ger.) 2005, 17, 1705.
10. Dimitrakopoulos, C. D.; Purushothaman, S.; Kymissis, J.; Callegari, A.; Shaw, J. M. Science (Washington, D. C.) 1999, 283, 822.
11. Dickey, K. C.; Smith, T. J.; Stevenson, K. J.; Subramanian, S.; Anthony, J. E.; Loo, L. Chem. Mater. 2007, 19, 5210.
12. Dodabalapur, A. Mater. Today (Oxford, U. K.) 2006, 9, 24.
13. 智慧卡 , https://zh.wikipedia.org/wiki/%E6%99%BA%E6%85%A7%E5%8D%A1
14. 廖顯杰 , 新電子科技雜誌 . 2007; Vol. 255.
15. 黃昌宏 , RFID 無線射頻識別標識系統的探討 (上 )-《印刷新訊》
第 49期,財團法人印刷工業技術研究中心研究發展組 , 2003年 9 月
16. 冉曉雯、顏國錫、羅淵仁 , 奈米通訊 , 2007, 第十四卷 , 第 3期 , 15.
17. Murphy, A. R.; Frechet, J. M. J. Chem. Rev. (Washington, DC, U. S.) 2007, 107, 1066.
18. Yoon, H.; Yan, H.; Facchetti, A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 10388.
19. 黃楚芸 , 可溶性 N 型醌型三併環噻吩與 P 型多併環噻吩有機
薄膜電晶體材料之開發 . 國立中央大學化學研究所碩士論文 , 2015
125
20. Horowitz, G. Adv. Mater. (Weinheim, Ger.) 1998, 10, 365.
21. 郭家瑋郭家瑋, 有機薄膜電晶體之載子傳輸特性研究有機薄膜電晶體之載子傳輸特性研究. 國立成功國立成功大學物大學物理研究所博理研究所博 士論文士論文, 2006.
22. Glaeser, R. M. B., R. S. J. Chem. Phys. 1966, 44, 3797.
23. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Chem. Rev. (Washington, DC, U. S.) 2012, 112, 2208.
24. 倪偵翔, 可溶性有機薄膜電晶體材料之開發. 國立中央大學化學研究所碩士論文, 2006.
25. 邱彥茹, 可溶性醌型三併環噻吩與聯噻吩高分子有機薄膜電晶體材料之開發. 國立中央大學化學研究所碩士論文, 2016.
26. Anthony, J. E. Chem. Rev. (Washington, DC, U. S.) 2006, 106, 5028.
27. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W. Adv. Mater. (Weinheim, Ger.) 2013, 25, 6158.
28. Liang, Y.; Chen, Z.; Jing, Y.; Rong, Y.; Facchetti, A.; Yao, Y. J. Am. Chem. Soc. 2015, 137, 4956.
29. Giri, G.; Verploegen, E.; Mannsfeld, S. C. B.; Atahan--Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru--Guzik, A.; Toney, M. F.; Bao, Z. Nature (London, U. K.)
2011, 480, 504.
30. Wu, W.; Liu, Y.; Zhu, D. Chem. Soc. Rev. 2010, 39, 1489.
31. Wen, Y.; Liu, Y. Adv. Mater. (Weinheim, Ger.) 2010, 22, 1331.
32. Mas--Torrent, M.; Rovira, C. Chem. Soc. Rev. 2008, 37, 827.
33. Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. (Weinheim, Ger.) 2002, 14, 99.
34. Niazi, M. R.; Li, R.; Abdelsamie, M.; Zhao, K.; Anjum, D.H.; Payne, M. M.; Anthony, J.; Smilgies, D. -M; Amassian, A. Adv. Funct. Mater. 2016, 26, 2381.
35. Takimiya, K.; Ebata, H.; Sakamoto, K.; Izawa, T.; Otsubo, T.; Kunugi, Y. J. Am. Chem. Soc. 2006, 128, 12604.
36. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T. J. Am. Chem. Soc. 2007, 129, 15732.
37. Yuan, Y.; Huang, J.; Giri, G.; Zoombelt, A. P.; Bao, Z.; Ayzner, A. L.; Mannsfeld, S. C. B.; Nordlund, D.; Toney, M. F.; Chen, J. Nat Commun 2014, 5, 3005.
38. Inoue, S.; Minemawari, H.; Tsutsumi, J. y.; Chikamatsu, M.; Yamada, T.; Horiuchi, S.; Tanaka, M.; Kumai, R.; Yoneya, M.; Hasegawa, T.
126
Chem. Mater. 2015, 27, 3809.
39. Yamamoto, T.; Takimiya, K. J. Am. Chem. Soc. 2007, 129, 2224.
40. Kang, M. J.; Doi, I.; Mori, H.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H. Adv. Mater. (Weinheim, Ger.) 2011, 23, 1222.
41. Sun, Y.; Ma, Y.; Liu, Y.; Lin, Y.; Wang, Z.; Wang, Y.; Di, C.; Xiao, K.; Chen, X.; Qiu, W.; Zhang, B.; Yu, G.; Hu, W.; Zhu, D. Adv. Funct. Mater. 2006, 16, 426.
42. Panzer, M. J.; Frisbie, C. D. J. Am Chem Soc 2007, 129, 6599.
43. Fei, Z.; Boufflet, P.; Wood, S.; Wade, J.; Moriarty, J.; Gann, E.; Ratcliff, E. L.; McNeill, C. R.; Sirringhaus, H.; Kim, J.--S.; Heeney, M. J. Am. Chem. Soc. 2015, 137, 6866.
44. Hamadani, B. H.; Gundlach, D. J.; McCulloch, I.; Heeney, M. Applied Physics Letters 2007, 91, 243512.
45. Fei, Z.; Pattanasattayavong, P.; Han, Y.; Schroeder, B. C.; Yan, F.; Kline, R. J.; Anthopoulos, T. D.; Heeney, M. J. Am. Chem. Soc. 2014, 136, 15154.
46. Kim, G.; Kang, S.--J.; Dutta, G. K.; Han, Y.--K.; Shin, T. J.; Noh, Y.--Y.; Yang, C. J. Am. Chem. Soc. 2014, 136, 9477.
47. Letizia, J. A.; Facchetti, A.; Stern, C. L.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2005, 127, 13476.
48. Yoon, M.--H.; Facchetti, A.; Stern, C. E.; Marks, T. J. J. Am. Chem. Soc. 2006, 128, 5792.
49. Ando, S.; Murakami, R.; Nishida, J.--I.; Tada, H.; Inoue, Y.; Tokito, S.; Yamashita, Y. J. Am. Chem. Soc. 2005, 127, 14996.
50. Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T. Chem. Mater. 2008, 20, 7486.
51. Zhang, C.; Zang, Y.; Zhang, F.; Diao, Y.; MCneill, C. R.; Di, C--A.; Zhu, X.; Zhu, D. Adv. Mater. 2016, 28, 8456.
52. Babel, A.; Jenekhe, S. A. J. Am. Chem. Soc. 2003, 125, 13656.
53. Zhan, X.; Tan, Z. a.; Domercq, B.; An, Z.; Zhang, X.; Barlow, S.; Li, Y.; Zhu, D.; Kippelen, B.; Marder, S. R. J. Am. Chem. Soc. 2007, 129, 7246.
54. Yan, H.; Chen, Z.; Zheng, Y.; Newman, C.; Quinn, J. R.; Dotz, F.; Kastler, M.; Facchetti, A. Nature (London, U. K.) 2009, 457, 679.
55. Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.;
127
Klapwijk, T. M. Nat. Mater. 2003, 2, 678.
56. Facchetti, A.; Mushrush, M.; Yoon, M.--H.; Hutchison, G. R.; Ratner, M. A.; Marks, T. J. J. Am. Chem. Soc. 2004, 126, 13859.
57. Huang, J.; Mao, Z.; Chen, Z.; Gao, D.; Wei, C.; Zhang, W.; Yu, G. Chem. Mater. 2016, 28, 2209.
58. Gruber, M.; Jung, S.--H.; Schott, S.; Venkateshvaran, D.; Kronemeijer, A. J.; Andreasen, J. W.; McNeill, C. R.; Wong, W. W. H.; Shahid, M.; Heeney, M.; Lee, J.--K.; Sirringhaus, H. Chem. Sci. 2015, 6, 6949.
59. Grätzel, M. Inorg. Chem. 2005, 44, 6841. 60. Chapin, D. M.; Fuller, C. C.; Person, G. L. J. Appl. Phys. 1954, 25, 676.
61. Sun, Y.; Welch, G. C.; Leong, W. L.; Takacs, C. J.; Bazan, G. C.; Heeger, A. J. Nat. Mater. 2011, 11, 44.
62. Wilson, G.; Mooney, D. 2013/05/14, from:
http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.
63. McEvoy, A.; Markvart, T.; Castaner, L. Practical Handbook of Photovoltaics (Second Edition), Academic Press., Switzerland, 2011.
64. Arkhipov, V. I.; Heremans, P.; Bässler, H. Appl. Phys. Lett. 2003, 82, 4605.
65. Winder, C.; Sariciftci, N. S. J. Mater. Chem. 2004, 14, 1077.
66. Mazhari, B. Sol. Energ Mat. Sol. C. 2006, 90, 1021.
67. Boudreault, P.--L. T.; Najari, A.; Leclerc, M. Chem. Mater. 2011, 23, 456.
68. Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L. Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 374.
69. Zhang, F.; Wu, D.; Xu Y.; Feng, X. J. Mater. Chem. 2011, 21, 17590.
70. Sakai, J.; Taima, T.; Yamanari, T.; Saito, K. Sol. Energy Mater. Sol. C. 2009, 93, 1149.
71. Schulze, K.; Riede, M.; Brier, E.; Reinold, E.; Bäuerle, P.; Leo, K. J. Appl. Phys. 2008, 104, 074511.
72. Schulze, K.; Uhrich, C.; Schüppel, R.; Leo, K.; Pfeiffer, M.; Brier, E.; Reinold, E.; Bäuerle, P. Adv. Mater. 2006, 18, 2872.
73. Haid, S.; Mishra, A.; Uhrich, C.; Pfeiffer, M.; Bäuerle, P. Chem. Mater. 2011, 23, 4435.
74. Mayer A. C.; Lloyd M. T.; Herman D. J.; Kasen T. G.; Malliaras G. G.
128
Appl. Phys. Lett. 85, 2004, 6272.
75. Uhrich C.; Schueppel R.; Petrich A.; Pfeiffer M.; Leo K.; Brier E.; Kilickiran P.; Baeuerle P. Adv. Funct. Mater. 2007, 17, 2991.
76. Tamayo, A. B.; Walker, B.; Nguyen, T.--Q. J. Phys. Chem. C, 2008, 112, 11545.
77. Sakai1, J.; Taima,T.; Yamanari, T.; Yoshida,Y.; Fujii, A.; Ozaki, M. Jpn. J. Appl. Phys. 2010, 49, 3R.
78. Yun, J--H.; Park, S.; Heo, J--H.; Lee, H--S.; Yoon, S.; Kang, J.; Im, S--H.; Kim, H.; Lee, W.; Kim, B.; Ko, M--J.; Chung, D--S.; Son, H--J. Chem. Sci. 2016, 7, 6649.
79. Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. S. J. Am. Chem. Soc. 2015, 137, 3886.
80. Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
81. Pfuetzner, S.; Meiss, J.; Petrich, A.; Riede, M.; Leo, K. Appl. Phys. Lett., 2009, 94, 223307.
82. (a) Hummelen, J. C.; Knight, B. W.; LePeq, F.; Wudl, F.; Yao, J.; Wilkins, C. L. J. Org. Chem. 1995, 60, 532; (b) Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science, 1995, 270, 1789.
83. He, Y.; Chen, H. Y.; Hou, J.; Li, Y. J. Am. Chem. Soc. 2010, 132, 1377.
84. Zhao, G.; He, Y.; Li, Y. Adv. Mater. 2010, 22, 4355.
85. Li, C.; Wonneberger, H. Adv. Mater. 2012, 24, 613.
86. Ye, L.; Sun, K.; Jiang, W.; Zhang, S.; Zhao, W.; Yao, H.; Wang, Z.; Hou, J. ACS Appl. Mater. Interfaces 2015, 7, 9274.
87. Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156.
88. Zhong, Y.; Trinh, M. T.; Chen, R.; Wang, W.; Khlyabich, P. P.; Kumar, B.; Xu, Q.; Nam, C.--Y.; Sfeir, M. Y.; Black, C.; Steigerwald, M. L.; Loo, Y.--L.; Xiao, S.; Ng, F.; Zhu, X. Y.; Nuckolls, C. J. Am. Chem. Soc. 2014, 136, 8122.
89. Holliday, S.; Ashraf, R. S.; Nielsen, C. B.; Kirkus, M.; Rö hr, J. A.; Tan, C.--H.; Collado--Fregoso, E.; Knall, A.--C.; Durrant, J. R.; Nelson, J.; McCulloch, I. J. Am. Chem. Soc. 2015, 137, 898.
129
90. Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Nielsen, C. B.; Yousaf, A.; Tan, C.--H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; Brabec, C. J.; Salleo, A.; Durrant, J. R.; McCulloch, I. Nature Communications 2015.
91. Lin, Y.; He, Q.; Zhao, F.; Huo, L.; Mai, J.; Lu, X.; Su, C. J.; Li, T.; Wang, J.; Zhu, J.; Sun, Y.; Wang, C.; Zhan, X. J. Am. Chem. Soc. 2016, 138, 2973.
92. Yang, Y.; Zhang, Z.--G.; Bin, H.; Chen, S.; Gao, L.; Xue, L.; Yang, C.; Li, Y. F. J. Am. Chem. Soc. 2016, 138, 15011.
93. Pope P.; Kallmann, H. P.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
94. Tang, C. W.; VanSlyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
95. Burroughs, J. H.; Bradley, D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 4344.
96. Klessinger, M.; Michl, J. Excited State and Photochemisrty of Organic Molecules, VCH Publishers, New York, 1995
97. (a) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489. (b) Adachi, C.; Tokito, S.; Tsutsui, T.; Saito, S. Jpn. J. Appl. Phys. Part2. 1988, 27, L269.
98. Kalinowski, J.; Fattori, V.; Cocchi, M.; Williams, J. G. Coord. Chem. Rev. 2011, 255, 2401.
99. Graham, K. R.; Yang, Y.; Sommer, J. R.; Shelton, A. H.; Schanze, K. S.; Xue, J.; Reynolds, J. R. Chem. Mater. 2011, 23, 5305.
100. Ly, K. T.; Chen--Cheng, R.--W.; Lin, H.--W.; Shiau, Y.--J.; Liu, S.--H.; Chou, P.--T.; Tsao, C.--S.; Huang, Y.--C.; Chi, Y. Nature Photonics, 2017, 11, 63.
101. (a) Borek, C.; Hanson, K.; Djurovich, P. I.; Thompson, M. E.; Aznavour, K.; Bau, R.; Sun, Y.; Forrest, S. R.; Brooks, J.; Michalski, L.; Brown, J. Angew. Chem. Int. Ed. 2007, 46, 110. (b) Cocchi, M.; Kalinowski, J.; Virgili, D.; Williams, J. Appl. Phys. Lett. 2008, 92, 113302.
(c) Lee, T. --C.; Hung, J. --Y.; Chi, Y.; Cheng, Y. --M.; Lee, G. --H.; Chou, P. --T.; Chen, C. --C.; Chang, C. --H.; Wu, C. --C. Adv. Funct. Mater. 2009, 19, 2639.
(d) Tao, R.; Qiao, J.; Zhang, G.; Duan, L.; Chen, C.; Wang, L.; Qiu, Y.
130
J. Mater. Chem. C 2013, 1, 6446. (e) Cao, X.; Miao, J.; Zhu, M.; Zhong, C.; Yang, C.; Wu, H.; Qin, J.; Cao, Y. Chem. Mater. 2014, 27, 96. (f) Schulze, M.; Steffen, A.; Würthner, F. Angew. Chem. Int. Ed. 2015, 54, 1570.
102. (a) Shimizu, M.; Kaki, R.; Takeda, Y.; Hiyama, T.; Nagai, N.; Yamagishi, H.; Furutani, H. Angew. Chem. Int. Ed. 2012, 51, 4095. (b) Van der Auweraer, M.; Grabowski, Z. R.; Rettig, W. J. Phys. Chem. 1991, 95, 2083. (c) Caspar, J. V.; Kober, E. M.; Sullivan, B. P.; Meyer, T. J. J. Am. Chem. Soc. 1982, 104, 630. (d) Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Angew. Chem. Int. Ed. 2015, 54, 13068.
103. (a) Steckler, T. T.; Fenwick, O.; Lockwood, T.; Andersson, M. R.; Cacialli, F. Macromol. Rapid Commun. 2013, 34, 990. (b) Yang, R.; Tian, R.; Yan, J.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244.
104. (a) Han, X.; Bai, Q.; Yao, L.; Liu, H.; Gao, Y.; Li, J.; Liu, L.; Liu, Y.; Li, X.; Lu, P.; Yang, B. Adv. Funct. Mater. 2015, 25, 7521. (b) Duan, L.; Qiao, J.; Sun, Y.; Qiu, Y. Adv. Mater. 2011, 23, 1137.
105. Data, P.; Pander, P.; Okazaki, M.; Takeda, Y.; Minakata, S.; Monkman, A. P. Angew. Chem. Int. Ed. 2016, 55, 5739.
106. Ellinger, S.; Graham, K.; Shi, R. P.; Farley, R. T.; Steckler, T. T.; Brookins, R. N.; Taranekar, P.; Mei, J.; Padilha, L. A.; Ensley, T. R.; Hu, H. H.; Webster, S.; Hagan, D. J.; Van Stryland, E. W.; Schanze, K. S.; R eynolds, J. R. Chem. Mater. 2011, 23, 3805.
107. Shimizu, M.; Kaki, R.; Takeda, Y.; Hiyama, T.; Nagai, N.; Yamagishi, H.; Furutani, H. Angew. Chem. 2012, 124, 4171.; Angew. Chem. Int. Ed. 2012, 51, 4095.
108. Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y.; Angew. Chem. Int. Ed. 2015, 54, 13068.
109. Cheng, X.; Wang, K.; Huang, S.; Zhang, H.; Zhang, H.; Wang, Yue. Angew. Chem. Int. Ed. 2015, 54, 8369.
110. Lei, Z.; Li, X.; Luo, X.; He, H.; Zheng, J.; Qian, X.; Yang, Y. Angew. Chem. Int. Ed. 2017, 56, 2979.
111. Zhou, J.; Wan, X.; Liu, Y.; Zuo, Y.; Li, Z.; He, G.; Long, G.; Ni,
131
W.; Li, C.; Su, X.; Chen,Y. J. Am. Chem. Soc. 2012, 134, 16345.
112. Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; Kan, B.; Li, M.; Chen,Y. J. Am. Chem. Soc. 2013, 135, 8484.
113. Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. S. J. Am. Chem. Soc. 2014, 136, 15529.
114. Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; Zuo, Y.; Zhang, M.; Huang, F.; Cao, Y.; Russell, T. P.; Chen, Y. S. J. Am. Chem. Soc. 2015, 137, 3886.
115. Liu, F.; Zhou, Z.; Zhang, C.; Vergote, T.; Fan, H. J.; Liu, F .; Bo, Z. S. J. Am. Chem. Soc. 2016, 138, 15523.
116. Dutta, G--K.; Han , A--R .; Lee , J.; Kim , Y.; Oh , J-- H.; Yang, C.; Adv. Funct. Mater. 2013, 23, 5317.
117. Shao, J.; Zhang, X. J.; Tian, H. K.; Geng, Y. H.; Wang, F. S.; J. Mater. Chem. C, 2015, 3, 7567.
指導教授 賴重光(Chong-Guang Lai) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明