博碩士論文 91523025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:18.226.186.58
姓名 鄭淦仁(Kan-Jen Cheng)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 毫米波段駐波壓控振盪器、混波器與相關被動電路之研製
(Design and Implementation of SVCO/MIXER and Related Passive Circuits for Millimeter-wave Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要研究與設計微小化之毫米波混波器,與以駐波方式實現的振盪器,加上其相關被動元件。論文內混波器主要架構為次諧波電阻性,頻率操作在28GHz,應用於LMDS系統;振盪器是用交錯耦合之電晶體補償共面帶線(CPS)共振腔損耗,以駐波方式取代傳統行波設計方式,應用在SONET光通訊網路(43GHz)。兩者是以WIN 0.15μm pHEMT製程研製;而被動元件則是利用Al2O3薄膜製程,實現共面波導(CPW)殘段(stub)的微小化與寬頻匹配,進而利用等效電感電容的串並接殘段實現微小化帶通濾波器,以及使用槽線(slotline)模態或是共面波導模態饋入的共振腔。殘段的微小化是用電容補償方式與將殘段折至訊號線內,降低插入損耗(insertion loss);共振腔是利用二分之波長的環形(ring)槽線代替長方形以縮小尺寸。經由量測,電阻性次諧波混波器的轉換損耗(conversion loss)為12 dB,輸入1 dB壓縮點為9 dBm,訊號隔離度大於30 dB;駐波壓控振盪器相位雜訊(phase noise)在偏離中心頻率1MHz為-101 dBc/Hz,輸出功率為6 dBm,可調頻率範圍為1GHz;毫米波帶通濾波器的尺寸縮小35﹪,介入損耗小於3dB,反射損耗大於15dB,有10GHz頻寬;共面波導並聯短路殘段,尺寸縮小25﹪,介入損耗小於3dB,反射損耗大於9dB,有5.7GHz頻寬;共面波導並聯開路殘段,尺寸縮小25﹪,介入損耗大於15dB,反射損耗小於1dB,有7GHz頻寬;共面波導模態饋入環形共振腔介入損耗大於15dB,反射損耗小於2.5dB,有10GHz頻寬;槽線模態饋入環形共振腔介入損耗大於14dB,反射損耗小於2.5dB,有1.5GHz頻寬。
摘要(英) This thesis investigates millimeter-wave mixer, oscillator and theirs correlated passive circuits. The topology of mixer is resistive type with the center frequency of 28GHz. The topology of local oscillator is cross-coupled scheme and its negative resistance is designed to compensate the loss of tapped resonator with the center frequency of 43GHz. Then the signal can be taken out by standing wave mode. These active circuits are implemented with WIN 0.15μm pHEMT. The millimeter-wave resonators and filters are fabricated with Al2O3 thin film process. The λ/4 shunt and series matching stubs are intentionally placed inside the center conductor to reduce the size and insertion loss of CPW filter. The λ/2 ring resonators replace the conventional rectangular resonators to reduce the size. The measured results of millimeter-wave circuits are as follows; for the sub-harmonic mixer, conversion loss is 12 dB, input power at the 1-dB gain compression point is 9 dBm, isolations among all ports are greater than 30dB; for the standing wave voltage-controlled oscillator, the operating frequency is 43 GHz, the phase noise is -101 dBc/Hz at 1MHz offset frequency, output power is 6 dBm, tuning range is 1 GHz; for the millimeter-wave band pass filter, insertion loss is smaller than 3dB, return loss is larger than 15dB, size is reduced to 35﹪, bandwidth is 10 GHz; for the CPW shunt short stub, insertion loss is smaller than 3dB, return loss is larger than 9dB, size is reduced to 25﹪, bandwidth is 5.7 GHz; for the CPW shunt open stub, insertion loss is larger than 15dB, return loss is smaller than 1dB, size is reduced to 25﹪, bandwidth is 7 GHz;for the CPW feed ring resonator, insertion loss is larger than 15dB, return loss is smaller than 2.5dB, bandwidth is 10 GHz; for the slotline feed ring resonator, insertion loss is larger than 14dB, return loss is smaller than 2.5dB, bandwidth is 1.5 GHz.
關鍵字(中) ★ 濾波器
★ 混波器
★ 駐波壓控振盪器
關鍵字(英) ★ svco
★ filter
★ mixer
論文目次 目錄
第一章 緒論 1
1-1研究動機 1
1-2研究成果 2
1-3章節概述 4
第二章 射頻接收機架構及系統考量 6
2-1接收機架構 6
2-2超外差式接收機 6
2-3直接降頻式接收機 8
2-4低中頻(Low IF)接收機 11
2-5鏡像頻率抑制接收機 12
2-5-1Hartley 架構 12
2-5-2 Weaver 架構 13
2-6各種架構比較 14
2-7接收機考量 15
2-7-1雜訊指數 16
2-7-2 1dB壓縮點 19
2-7-3動態範圍 20
2-7-4交互調變失真 21
第三章 毫米波被動電路設計及在氧化鋁基版之實現 25
3-1氧化鋁基版製程參數簡介 25
3-2共面波導簡介 26
3-3共面波導不連續接面 31
3-4 共面波導帶通濾波器 35
3-4-1濾波器簡介 35
3-4-2微小化串並聯殘段 37
3-5結論 53
第四章 28GHz頻段電阻性次諧波混頻器 55
4-1簡介 55
4-2應用在LMDS系統 55
4-3混頻器 56
4-3-1混頻器原理 56
4-3-2混頻器種類 57
4-3-3混頻器重要規格 60
4-4電阻性次諧波混頻器電路架構與原理 63
4-5微小化馬遜平衡器與功率分配器 67
4-5-1平行耦合線簡介 67
4-5-2微小化的馬遜平衡器與功率分配器 69
4-6設計流程 78
4-7量測結果 79
4-8結果討論 83
第五章43GHz駐波壓控振盪器 85
5-1振盪器簡介 85
5-1-1主動元件部分 86
5-1-2共振腔部分 86
5-2振盪器基本原理 87
5-3駐波振盪器 95
5-3-1駐波與行波 95
5-3-2共面帶線(CPS)特性 97
5-3-3共面帶線(CPS)共振腔 100
5-4駐波壓控振盪器 102
5-4-1電路架構與原理 103
5-4-3量測結果 107
第六章結論 112
參考文獻……………………………………………………………………….…114
參考文獻 參考文獻
[1] C. P. Wen, “Coplanar waveguide: A surface strip transmission line suitable for
nonreciprocal gyromagnetic device application,” IEEE Trans. Microwave Theory Tech., vol. 17, pp. 1087-1090, Dec. 1969.
[2] D. K. Shaeffer and T. H. Lee, “A 1.5V, 1.5GHz CMOS low noise amplifier”, Symp. VLSI Circuits, Technical Papers, pp. 32-33, 1996.
[3] J. C. Rudell, J. J. Ou, T. B. Cho, G. Chien, F. Brianti, J. A. Weldon, and P. R. Gray, “A 1.9GHz wide-band IF double conversion CMOS integrated receiver for cordless telephone applications”, IEEE International Solid-State Circuits Conference, pp.304-305, 1994.
[4] H. Wang, “A 9.8GHz back-gate tuned VCO in 0.35μm CMOS”, IEEE International Solid-State Circuits Conference, pp.406-408, 1999.
[5] K. Yamaguchi, M. Fukaishi, T. Sakamoto, N. Akiyama, and K. 143 Nakamura, “A 2.5GHz four-phase clock generator with scalable nofeedback-loop architecture”,IEEE J. Solid-State Circuits, vol. 36, No.11, pp. 1666-1672, 2001.
[6] K. Nishikawa, K. Kamogawa, T. Nakagawa, and M. Tanaka, “Lowvoltage
C-band Si BJT single-chip receiver MMIC based on Si 3-D MMIC technology”, IEEE Microwave and Guided Wave Letters, vol.10, No. 6, pp. 248-250, 2000.
[7] W. Z. Chen and J. T. Wu, “A 2-V, 1.8-GHz BJT phase-locked loop”,IEEE J. Solid-State Circuits, vol. 34, No. 6, pp. 784-789, 1999.
[8] P. Vaananen, M. Metsanvirta, and N. T. Tchamov, “A 4.3-GHz VCO with 2-GHz tuning range and low phase noise”, IEEE J. Solid-State Circuits, vol. 36, No. 1, pp. 142-146, 2001.
[9] S. Luo and T. Sowlati, “A monolithic Si PCS-CDMA power amplifier with 30% PAE at 1.9 GHz using a novel biasing scheme”,IEEE Trans. Microwave Theory and Techniques, vol. 49, No. 9, pp.1552-1557, 2001.
[10] F. X. Sinnesbichler, H. Geltinger, and G. R. Olbrich, “A 38-GHz push-push oscillator based on 25-GHz fT BJT’s”, IEEE Microwave and Guided Wave Letters, vol. 9, No. 4, pp. 151-153, 1999.
[11] T.A, Bos.; E, Camargo.; “A balanced resistive mixer avoiding an IF balun”,
Microwave Symposium Digest, 2002 IEEE MTT-S International Volume 1, 2-7 pp. 245 – 248, June 2002.
[12] N.A, Rahman.; B.Y, Majlis.; A, Ariffin.; “A 28 GHz PHEMT GaAs MMIC single-ended resistive mixer”Semiconductor Electronics, 2002. Proceedings. ICSE 2002. IEEE International Conference on
19-21 pp. 511 – 513, Dec. 2002.
[13] K.S, Ang.; A.H, Baree.; S, Nam.; I.D, Robertson.; “A millimeter-wave monolithic sub-harmonically pumped resistive mixer”,Microwave Conference, 1999 Asia Pacific Volume 2, 30 Nov.-3 pp.222 - 225 vol.2, Dec. 1999.
[14] D. K. Schaeffer and S. Kudszus, “Performance-optimized microstrip coupled VCOs for 40-GHz and 43-GHz OC-768 optical transmission”, IEEE Journal of Solid-stateCircuits, Vol. 38, No. 7, July 2003.
[15] M. Tiebout, H.-D. Wohlmuth and W. Simbiirger, “A 1V 51 GHz fully-integrated VCO in 0.12 um CMOS”, IEEE International Solid-State Circuits Conference, pp. 300-301, Feb. 2002.
[16] N. Fong, J.-0. Plouchart, N. Zamdmer, Liu Duixian, L.Wagner, P. Garry, G. Tarr, “A 40 GHz VCO with 9 to 15% tuning range in 0.13 pm SO1 CMOS”, Symposizm on VLSI Circuits Digest, pp. 186-189, June 2002.
[17] F. Ellinger.; T. Morf.; G. Buren.; C. Kromer.; G. Sialm.; L. Rodoni.; M.Schmatz.; H. Jackel.; “60 GHz VCO with wideband tuning range fabricated on VLSI SOI CMOS technology” ,Microwave Symposium Digest, 2004 IEEE MTT-S International Volume 3, 6-11 pp. 1329 - 1332 Vol.3, June 2004.
[18] K. Chang, I. Bahl, V. Nair, “RF and Microwave Circuit and Component Design for Wireless Systems,” John Wiley, New York, December 2001
[19] P. Vizmulleri, RF Design Guide: Systems, Circuits, and Equations, ArtechHouse, 1995
[20] M. Hourdart, “Coupled lines: Applications to broadband microwaveintegrated circuits,” Proc. Sixth European Microwave Conference, pp.49-53, 1976.
[21] P. Holder, “X-band microwave integrated circuits using slotlines and coplanar waveguide”,Radio Electron. Eng., vol. 48 pp. 38-42, Jan. 1978.
[22] D. F. Williams and S. E. Schwarz, “Design and performance of coplanar waveguide bandpass filter,” IEEE Trans. Microwave Theory Tech., vol. 31, pp.558-566, July 1983.
[23] M. Naghed, M. Rittweger and I. Wolff, “A new method for the calculation of the equivalent inductances of coplanar waveguide discontinuities,” IEEE MTT-S Int. Microwave Symp. Dig., pp.747-751, 1991.
[24] J. K. A. Everard and K. K. M . Cheng “High performance direct coupled bandpass filters on coplanar waveguide,” IEEE Trans. Microwave Theory Tech., vol. 41, pp.1568-1573, Sept. 1993.
[25] S. Uysal, “Copalanr waveguide edge-coupled bandpass filters with finite ground planes,” Electronics Letters, vol-30, No.22, pp. 1862-1863, Oct. 1994.
[26] F. Mernyei, I. Aoki, and H. Matsuura, “MMIC bandpass filter using parallel-coupled CPW lines,” Electronics Letters, vol-33, No.5, pp. 375-376,Feb. 1997.
[27] F. L. Lin, C. W. Chiu, and R. B. Wu, “Coplanar waveguide bandpass filter _ a ribbon-of-brick-wall design,” IEEE Trans. Microwave Theory Tech., vol.47 pp.1589-1596, July 1995.
[28] A.F Sheta, K. Hettak, J.Ph. Coupez, C.Person, and S. Toutain, “A new semi-lumped microwave filter structure,” IEEE MTT-S Int. Microwave Symp. Dig., pp.383-386, 1995.
[29] K. C. Gupta et al., Microstrip Lines and Slotlines, 2nd. Artech House, Inc.,1996.
[30] David M. Pozar, Microwave Engineering, 2nd, John Wiley&Sons,Inc.,1998.
[31] K. Hettak; G.A. Morin; M.G. Stubbs; “Compact MMIC CPW and Asymmetric CPS Branch-Line Couplers and Wilkinson Dividers Using Shunt and Series Stub
Loading”Microwave Theory and Techniques, IEEE Transactions on
Volume53, Issue 5, pp.1624 – 1635, May 2005.
[32] T.M. Weller; L.P. Katehi; “Miniature stub and filter designs using the microshield transmission line”Microwave Symposium Digest, 1995., IEEE MTT-S International16-20, pp.675 - 678 vol.2, May 1995.
[33] K. Hettak; N. Dib; A.F. Sheta; S. Toutain; “A class of novel uniplanar series resonators and their implementation in original applications Microwave Theory and Techniques ,” IEEE Transactions on Volume 46, Issue 9, pp.1270 – 1276, Sept. 1998.
[34] M. Mradmanesh and N. A. Barakat, “State of the art S-band resistive FET mixers,” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1435–1438, 1994.
[35] S.A. Maas, “A GaAs MESFET Balanced Mixer with Very Low Intermodulation,” Microwave Symposium Digest, MTT-S International
Volume 87, Issue 2, pp.895 – 898, 1994.
[36] Chang-Ho Lee, Joy Laskar.” Compact Ku-band transmitter design for satellite communication applications : from system analysis to hardware implementation,” Kluwer Academic Publishers, 2002
[37] Stephen A. Maas.” The RF and microwave circuit design cookbook,” Artech House, 1998
[38] K.S. Ang; A.H. Baree; S. Nam; I.D. Robertson ,” A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” Microwave Conference, 1999 Asia Pacific , Volume: 2 , Nov 1999
[39] H. Zirath; I. Angelov; N. Rorsman, ,” A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” Microwave Symposium Digest, 1992., IEEE MTT-S International , 1-5 Jun 1992
[40] R.S. Virk; Long Tran; M. Matloubian; Minh Le; M.G. Case; C. Ngo,” A comparison of W-band MMIC mixers using InP HEMT technology,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 2 , 8-13 Jun 1997
[41] Mongia, R., Bahl, I., and Bhartia, P., RF and Microwave Coupled-Line Circuits, Artech House, Norwood,MA 02062, first edition, 1999
[42] G. D. Vendelin, et al., Microwave Circuit Design Using Linear and Nonliner Techniques, Jwiley, New York, chpt. 6, pp. 384-396, 1990.
[43] W. Andress and D. Ham, “Standing wave oscillators utilizing
wave-adaptive tapered transmission lines, ” IEEE Journal of Solid-State Circuits, vol. 40, no. 3, March 2005
[44] H. Donhee and W. Andress, “A circular standing wave oscillator,” IEEE International Solid-State Circuits Conference, Feb. 2004
[45] 王鐘民,“寬頻平衡式微波壓控振盪器之研製” 碩士論文, 私立元智大學,
民國89年
[46] Guillermo Gonzalez, “Microwave Transistor Amplifiers ,” Prentice Hall, pp. 388-391, 1997.
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2005-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明