參考文獻 |
1. Everett, D. H., MANUAL OF SYMBOLS AND TERMINOLOGY FOR PHYSICOCHEMICAL QUANTITIES AND UNITS APPENDIX II Definitions, Terminology and Symbols in Colloid and Surface Chemistry PART I. Pure Apple. Chem. 1972, 31, 578-638.
2. Namasivayam, C.; Kavitha, D., Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes and Pigments 2002, 54 (1), 47-58.
3. Brasquet, C.; Le Cloirec, P., Adsorption onto activated carbon fibers: Application to water and air treatments. Carbon 1997, 35 (9), 1307-1313.
4. Aguado, J.; Arsuaga, J. M.; Arencibia, A.; Lindo, M.; Gascón, V., Aqueous heavy metals removal by adsorption on amine-functionalized mesoporous silica. Journal of Hazardous Materials 2009, 163 (1), 213-221.
5. Li, G.; Zhao, Z.; Liu, J.; Jiang, G., Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica. Journal of hazardous materials 2011, 192 (1), 277-283.
6. Yan, Z.; Tao, S.; Yin, J.; Li, G., Mesoporous silicas functionalized with a high density of carboxylate groups as efficient absorbents for the removal of basic dyestuffs. Journal of Materials Chemistry 2006, 16 (24), 2347-2353.
7. Deere, J.; Magner, E.; Wall, J.; Hodnett, B., Adsorption and activity of cytochrome c on mesoporous silicatesElectronic supplementary information (ESI) available: experimental details. See http://www. rsc. org/suppdata/cc/b0/b009478l. Chemical Communications 2001, (5), 465-465.
8. Yang, Y.-C.; Deka, J. R.; Wu, C.-E.; Tsai, C.-H.; Saikia, D.; Kao, H.-M., Cage like ordered carboxylic acid functionalized mesoporous silica with enlarged pores for enzyme adsorption. Journal of Materials Science 2017, 52 (11), 6322-6340.
9. Hao, Y.; Chong, Y.; Li, S.; Yang, H., Controlled synthesis of Au nanoparticles in the nanocages of SBA-16: improved activity and enhanced recyclability for the oxidative esterification of alcohols. The Journal of Physical Chemistry C 2012, 116 (11), 6512-6519.
10. Li, M.; Hu, J.; Lu, H., A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catalysis Science & Technology 2016, 6 (19), 7186-7192.
11. Saikia, D.; Huang, Y.-Y.; Wu, C.-E.; Kao, H.-M., Size dependence of silver nanoparticles in carboxylic acid functionalized mesoporous silica SBA-15 for catalytic reduction of 4-nitrophenol. RSC Advances 2016, 6 (42), 35167-35176.
12. Karimian, D.; Yadollahi, B.; Mirkhani, V., Dual functional hybrid-polyoxometalate as a new approach for multidrug delivery. Microporous and Mesoporous Materials 2017, 247, 23-30.
13. Zhou, H.; Zhu, S.; Honma, I.; Seki, K., Methane gas storage in self-ordered mesoporous carbon (CMK-3). Chemical Physics Letters 2004, 396 (4-6), 252-255.
14. Raman, N. K.; Anderson, M. T.; Brinker, C. J., Template-Based Approaches to the Preparation of Amorphous, Nanoporous Silicas. Chemistry of Materials 1996, 8 (8), 1682-1701.
15. Frank, H.; Maximilian, C.; Jürgen, M.; Michael, F., Silica‐Based Mesoporous Organic–Inorganic Hybrid Materials. Angewandte Chemie International Edition 2006, 45 (20), 3216-3251.
16. Gibson, L. T., Mesosilica materials and organic pollutant adsorption: part A removal from air. Chemical Society Reviews 2014, 43 (15), 5163-5172.
17. Li, W.; Zhao, D., An overview of the synthesis of ordered mesoporous materials. Chemical Communications 2013, 49 (10), 943-946.
18. Kim, T.-W.; Kleitz, F.; Paul, B.; Ryoo, R., MCM-48-like Large Mesoporous Silicas with Tailored Pore Structure: Facile Synthesis Domain in a Ternary Triblock Copolymer−Butanol−Water System. Journal of the American Chemical Society 2005, 127 (20), 7601-7610.
19. Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics 1976, 72 (0), 1525-1568.
20. Zhang, J.; Li, X.; Li, X., Stimuli-triggered structural engineering of synthetic and biological polymeric assemblies. Progress in Polymer Science 2012, 37 (8), 1130-1176.
21. D. Fennell Evans, H. W., The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet. 1999; Vol. 2nd Edition.
22. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843.
23. Han, L.; Che, S., An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems. Advanced Materials 2018, 30 (17), 1705708.
24. Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G. H.; Chmelka, B. F.; Stucky, G. D., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279 (5350), 548.
25. Galarneau, A.; Nader, M.; Guenneau, F.; Di Renzo, F.; Gedeon, A., Understanding the Stability in Water of Mesoporous SBA-15 and MCM-41. The Journal of Physical Chemistry C 2007, 111 (23), 8268-8277.
26. Kleitz, F.; Hei Choi, S.; Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chemical Communications 2003, (17), 2136-2137.
27. Almar, L.; Colldeforns, B.; Yedra, L.; Estrade, S.; Peiro, F.; Morata, A.; Andreu, T.; Tarancon, A., High-temperature long-term stable ordered mesoporous Ni-CGO as an anode for solid oxide fuel cells. Journal of Materials Chemistry A 2013, 1 (14), 4531-4538.
28. Ma, X.; Jiang, T.; Han, B.; Zhang, J.; Miao, S.; Ding, K.; An, G.; Xie, Y.; Zhou, Y.; Zhu, A., Palladium nanoparticles in polyethylene glycols: Efficient and recyclable catalyst system for hydrogenation of olefins. Catalysis Communications 2008, 9 (1), 70-74.
29. Wang, D.; Astruc, D., The Golden Age of Transfer Hydrogenation. Chemical Reviews 2015, 115 (13), 6621-6686.
30. Bhuyan, D.; Saikia, L., Scavenging Pd2+ on Amine-Functionalized SBA-15: A Facile Synthesis of Leach-Free Pd0 Nanocatalyst for Base-Free Chemoselective Transfer Hydrogenation of Olefins. ChemistrySelect 2017, 2 (22), 6350-6358.
31. Chen, A.; Li, Y.; Chen, J.; Zhao, G.; Ma, L.; Yu, Y., Selective Hydrogenation of Phenol and Derivatives over Polymer-Functionalized Carbon-Nanofiber-Supported Palladium Using Sodium Formate as the Hydrogen Source. ChemPlusChem 2013, 78 (11), 1370-1378.
32. Vernekar, A. A.; Patil, S.; Bhat, C.; Tilve, S. G., Magnetically recoverable catalytic Co–Co2B nanocomposites for the chemoselective reduction of aromatic nitro compounds. RSC Advances 2013, 3 (32), 13243-13250.
33. Sarmah, P. P.; Dutta, D. K., Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay. Green Chemistry 2012, 14 (4), 1086-1093.
34. Zhang, C.; Leng, Y.; Jiang, P.; Li, J.; Du, S., Immobilizing Palladium Nanoparticles on Nitrogen-Doped Carbon for Promotion of Formic Acid Dehydrogenation and Alkene Hydrogenation. ChemistrySelect 2017, 2 (20), 5469-5474.
35. Harraz, F. A.; El-Hout, S. E.; Killa, H. M.; Ibrahim, I. A., Palladium nanoparticles stabilized by polyethylene glycol: Efficient, recyclable catalyst for hydrogenation of styrene and nitrobenzene. Journal of Catalysis 2012, 286, 184-192.
36. Gong, L.-H.; Cai, Y.-Y.; Li, X.-H.; Zhang, Y.-N.; Su, J.; Chen, J.-S., Room-temperature transfer hydrogenation and fast separation of unsaturated compounds over heterogeneous catalysts in an aqueous solution of formic acid. Green Chemistry 2014, 16 (8), 3746-3751.
37. Vix-Guterl, C.; Frackowiak, E.; Jurewicz, K.; Friebe, M.; Parmentier, J.; Béguin, F., Electrochemical energy storage in ordered porous carbon materials. Carbon 2005, 43 (6), 1293-1302.
38. Sui, Z.; Meng, Q.; Zhang, X.; Ma, R.; Cao, B., Green synthesis of carbon nanotube–graphene hybrid aerogels and their use as versatile agents for water purification. Journal of Materials Chemistry 2012, 22 (18), 8767-8771.
39. Fang, W.; Zhang, N.; Fan, L.; Sun, K., Preparation of polypyrrole-coated Bi2O3@ CMK-3 nanocomposite for electrochemical lithium storage. Electrochimica Acta 2017, 238, 202-209.
40. Ryoo, R.; Joo, S. H.; Jun, S., Synthesis of Highly Ordered Carbon molecular Sieves via Template-Mediated Structural Transformation. The Journal of Physical Chemistry B 1999, 103 (37), 7743-7746.
41. Liang, C.; Li, Z.; Dai, S., Mesoporous Carbon Materials: Synthesis and Modification. Angewandte Chemie International Edition 2008, 47 (20), 3696-3717.
42. Ryoo, R.; Joo, S. H.; Kruk, M.; Jaroniec, M., Ordered Mesoporous Carbons. Advanced Materials 2001, 13 (9), 677-681.
43. Wang, Y.; Wang, X.; Antonietti, M., Polymeric Graphitic Carbon Nitride as a Heterogeneous Organocatalyst: From Photochemistry to Multipurpose Catalysis to Sustainable Chemistry. Angewandte Chemie International Edition 2012, 51 (1), 68-89.
44. Zheng, Y.; Liu, J.; Liang, J.; Jaroniec, M.; Qiao, S. Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy & Environmental Science 2012, 5 (5), 6717-6731.
45. Zhu, C.; Dong, S., Recent progress in graphene-based nanomaterials as advanced electrocatalysts towards oxygen reduction reaction. Nanoscale 2013, 5 (5), 1753-1767.
46. Portehault, D.; Giordano, C.; Gervais, C.; Senkovska, I.; Kaskel, S.; Sanchez, C.; Antonietti, M., High-Surface-Area Nanoporous Boron Carbon Nitrides for Hydrogen Storage. Advanced Functional Materials 2010, 20 (11), 1827-1833.
47. Lee, J. H.; Ryu, J.; Kim, J. Y.; Nam, S.-W.; Han, J. H.; Lim, T.-H.; Gautam, S.; Chae, K. H.; Yoon, C. W., Carbon dioxide mediated, reversible chemical hydrogen storage using a Pd nanocatalyst supported on mesoporous graphitic carbon nitride. Journal of Materials Chemistry A 2014, 2 (25), 9490-9495.
48. Deng, Q.-F.; Liu, L.; Lin, X.-Z.; Du, G.; Liu, Y.; Yuan, Z.-Y., Synthesis and CO2 capture properties of mesoporous carbon nitride materials. Chemical Engineering Journal 2012, 203, 63-70.
49. Wei, J.; Zhou, D.; Sun, Z.; Deng, Y.; Xia, Y.; Zhao, D., A Controllable Synthesis of Rich Nitrogen-Doped Ordered Mesoporous Carbon for CO2 Capture and Supercapacitors. Advanced Functional Materials 2013, 23 (18), 2322-2328.
50. Xiao, J.; Xie, Y.; Nawaz, F.; Jin, S.; Duan, F.; Li, M.; Cao, H., Super synergy between photocatalysis and ozonation using bulk g-C3N4 as catalyst: A potential sunlight/O3/g-C3N4 method for efficient water decontamination. Applied Catalysis B: Environmental 2016, 181, 420-428.
51. Malik, R.; Tomer, V. K.; Dankwort, T.; Mishra, Y. K.; Kienle, L., Cubic mesoporous Pd–WO3 loaded graphitic carbon nitride (g-CN) nanohybrids: highly sensitive and temperature dependent VOC sensors. Journal of Materials Chemistry A 2018, 6 (23), 10718-10730.
52. Wang, Y.; Wang, X.; Antonietti, M.; Zhang, Y., Facile One-Pot Synthesis of Nanoporous Carbon Nitride Solids by Using Soft Templates. ChemSusChem 2010, 3 (4), 435-439.
53. Yan, H., Soft-templating synthesis of mesoporous graphitic carbon nitride with enhanced photocatalytic H2 evolution under visible light. Chemical Communications 2012, 48 (28), 3430-3432.
54. Vinu, A.; Ariga, K.; Mori, T.; Nakanishi, T.; Hishita, S.; Golberg, D.; Bando, Y., Preparation and Characterization of Well-Ordered Hexagonal Mesoporous Carbon Nitride. Advanced Materials 2005, 17 (13), 1648-1652.
55. Mane, G. P.; Dhawale, D. S.; Anand, C.; Ariga, K.; Ji, Q.; Wahab, M. A.; Mori, T.; Vinu, A., Selective sensing performance of mesoporous carbon nitride with a highly ordered porous structure prepared from 3-amino-1,2,4-triazine. Journal of Materials Chemistry A 2013, 1 (8), 2913-2920.
56. Gu, D.; Schüth, F., Synthesis of non-siliceous mesoporous oxides. Chemical Society Reviews 2014, 43 (1), 313-344.
57. Qiu, Y.; Gao, L., Chemical synthesis of turbostratic carbon nitride, containing C–N crystallites, at atmospheric pressure. Chemical Communications 2003, (18), 2378-2379.
58. Guo, Q.; Yang, Q.; Zhu, L.; Yi, C.; Zhang, S.; Xie, Y., A facile one-pot solvothermal route to tubular forms of luminescent polymeric networks [(C3N3)2(NH)3]n. Solid State Communications 2004, 132 (6), 369-374.
59. Kaatz, F. H.; Dai, J. Y.; Markworth, P. R.; Buchholz, D. B.; Chang, R. P. H., Heteroepitaxial oxide structures grown by pulsed organometallic beam epitaxy (POMBE). Journal of Crystal Growth 2003, 247 (3), 509-515.
60. Zimmerman, J. L.; Williams, R.; Khabashesku, V. N.; Margrave, J. L., Synthesis of Spherical Carbon Nitride Nanostructures. Nano Letters 2001, 1 (12), 731-734.
61. Zhong, L.; Anand, C.; Lakhi, K. S.; Lawrence, G.; Vinu, A., Bifunctional Mesoporous Carbon Nitride: Highly Efficient Enzyme-like Catalyst for One-pot Deacetalization-Knoevenagel Reaction. Scientific Reports 2015, 5, 12901.
62. Vinu, A.; Srinivasu, P.; Sawant, D. P.; Mori, T.; Ariga, K.; Chang, J.-S.; Jhung, S.-H.; Balasubramanian, V. V.; Hwang, Y. K., Three-Dimensional Cage Type Mesoporous CN-Based Hybrid Material with Very High Surface Area and Pore Volume. Chemistry of Materials 2007, 19 (17), 4367-4372.
63. Lakhi, K. S.; Cha, W. S.; Joseph, S.; Wood, B. J.; Aldeyab, S. S.; Lawrence, G.; Choy, J.-H.; Vinu, A., Cage type mesoporous carbon nitride with large mesopores for CO2 capture. Catalysis Today 2015, 243, 209-217.
64. Jin, X.; Balasubramanian, V. V.; Selvan, S. T.; Sawant, D. P.; Chari, M. A.; Lu, G. Q.; Vinu, A., Highly Ordered Mesoporous Carbon Nitride Nanoparticles with High Nitrogen Content: A Metal-Free Basic Catalyst. Angewandte Chemie International Edition 2009, 48 (42), 7884-7887.
65. Talapaneni, S. N.; Mane, G. P.; Mano, A.; Anand, C.; Dhawale, D. S.; Mori, T.; Vinu, A., Synthesis of Nitrogen-Rich Mesoporous Carbon Nitride with Tunable Pores, Band Gaps and Nitrogen Content from a Single Aminoguanidine Precursor. ChemSusChem 2012, 5 (4), 700-708.
66. Talapaneni, S. N.; Anandan, S.; Mane, G. P.; Anand, C.; Dhawale, D. S.; Varghese, S.; Mano, A.; Mori, T.; Vinu, A., Facile synthesis and basic catalytic application of 3D mesoporous carbon nitride with a controllable bimodal distribution. Journal of Materials Chemistry 2012, 22 (19), 9831-9840.
67. Ma, F.; Zhao, H.; Sun, L.; Li, Q.; Huo, L.; Xia, T.; Gao, S.; Pang, G.; Shi, Z.; Feng, S., A facile route for nitrogen-doped hollow graphitic carbon spheres with superior performance in supercapacitors. Journal of Materials Chemistry 2012, 22 (27), 13464-13468.
68. Chen, X. Y.; Chen, C.; Zhang, Z. J.; Xie, D. H.; Deng, X.; Liu, J. W., Nitrogen-doped porous carbon for supercapacitor with long-term electrochemical stability. Journal of Power Sources 2013, 230, 50-58.
69. Sun, G.; Ma, L.; Ran, J.; Li, B.; Shen, X.; Tong, H., Templated synthesis and activation of highly nitrogen-doped worm-like carbon composites based on melamine-urea-formaldehyde resins for high performance supercapacitors. Electrochimica Acta 2016, 194, 168-178.
70. Tan, H. T.; Chen, Y.; Zhou, C.; Jia, X.; Zhu, J.; Chen, J.; Rui, X.; Yan, Q.; Yang, Y., Palladium nanoparticles supported on manganese oxide–CNT composites for solvent-free aerobic oxidation of alcohols: Tuning the properties of Pd active sites using MnOx. Applied Catalysis B: Environmental 2012, 119-120, 166-174.
71. Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y., Recent advances in heterogeneous selective oxidation catalysis for sustainable chemistry. Chem Soc Rev 2014, 43 (10), 3480-524.
72. Luzzio, F. A.; Fitch, R. W.; Moore, W. J.; Mudd, K. J., A Facile Oxidation of Alcohols Using Pyridinium Chlorochromate/Silica Gel. Journal of Chemical Education 1999, 76 (7), 974.
73. Sheldon, R. A.; Arends, I. W. C. E.; ten Brink, G.-J.; Dijksman, A., Green, Catalytic Oxidations of Alcohols. Accounts of Chemical Research 2002, 35 (9), 774-781
74. García-Suárez, E. J.; Tristany, M.; García, A. B.; Collière, V.; Philippot, K., Carbon-supported Ru and Pd nanoparticles: Efficient and recyclable catalysts for the aerobic oxidation of benzyl alcohol in water. Microporous and Mesoporous Materials 2012, 153, 155-162.
75. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K., Hydroxyapatite-Supported Palladium Nanoclusters: A Highly Active Heterogeneous Catalyst for Selective Oxidation of Alcohols by Use of Molecular Oxygen. Journal of the American Chemical Society 2004, 126 (34), 10657-10666.
76. Lu, A.-H.; Li, W.-C.; Hou, Z.; Schüth, F., Molecular level dispersed Pd clusters in the carbon walls of ordered mesoporous carbon as a highly selective alcohol oxidation catalyst. Chemical Communications 2007, (10), 1038-1040.
77. Harada, T.; Ikeda, S.; Hashimoto, F.; Sakata, T.; Ikeue, K.; Torimoto, T.; Matsumura, M., Catalytic Activity and Regeneration Property of a Pd Nanoparticle Encapsulated in a Hollow Porous Carbon Sphere for Aerobic Alcohol Oxidation. Langmuir 2010, 26 (22), 17720-17725.
78. Chen, Y.; Guo, Z.; Chen, T.; Yang, Y., Surface-functionalized TUD-1 mesoporous molecular sieve supported palladium for solvent-free aerobic oxidation of benzyl alcohol. Journal of Catalysis 2010, 275 (1), 11-24.
79. Wang, B.; Lin, M.; Ang, T. P.; Chang, J.; Yang, Y.; Borgna, A., Liquid phase aerobic oxidation of benzyl alcohol over Pd and Rh catalysts on N-doped mesoporous carbon: Effect of the surface acido-basicity. Catalysis Communications 2012, 25, 96-101.
80. Wang, Z.-L.; Yan, J.-M.; Wang, H.-L.; Jiang, Q., Self-protective cobalt nanocatalyst for long-time recycle application on hydrogen generation by its free metal-ion conversion. Journal of Power Sources 2013, 243, 431-435.
81. Li, J.; Cheng, S.; Du, T.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z., Pd anchored on C3N4 nanosheets/reduced graphene oxide: an efficient catalyst for the transfer hydrogenation of alkenes. New Journal of Chemistry 2018, 42 (11), 9324-9331.
82. Karimi, B.; Zamani, A.; Abedi, S.; Clark, J. H., Aerobic oxidation of alcohols using various types of immobilized palladium catalyst: the synergistic role of functionalized ligands, morphology of support, and solvent in generating and stabilizing nanoparticles. Green Chemistry 2009, 11 (1), 109-119.
83. Hu, Z.; Tan, S.; Mi, R.; Li, X.; Bai, J.; Guo, X.; Hu, G.; Hang, P.; Li, J.; Li, D.; Yang, Y.; Yan, X., Formic Acid or Formate Derivatives as the In Situ Hydrogen Source in Au-Catalyzed Reduction of para-Chloronitrobenzene. ChemistrySelect 2018, 3 (10), 2850-2853.
84. Pan, Y.; Ma, D.; Liu, H.; Wu, H.; He, D.; Li, Y., Uncoordinated carbonyl groups of MOFs as anchoring sites for the preparation of highly active Pd nano-catalysts. Journal of Materials Chemistry 2012, 22 (21), 10834-10839.
85. Li, J.; Zhou, X.; Shang, N.-Z.; Feng, C.; Gao, S.-T.; Wang, C., Nitrogen-enriched porous carbon supported Pd-nanoparticles as an efficient catalyst for the transfer hydrogenation of alkenes. New Journal of Chemistry 2018, 42 (20), 16823-16828.
86. Pels, J. R.; Kapteijn, F.; Moulijn, J. A.; Zhu, Q.; Thomas, K. M., Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon 1995, 33 (11), 1641-1653.
87. Chen, Y.; Zheng, H.; Guo, Z.; Zhou, C.; Wang, C.; Borgna, A.; Yang, Y., Pd catalysts supported on MnCeOx mixed oxides and their catalytic application in solvent-free aerobic oxidation of benzyl alcohol: Support composition and structure sensitivity. Journal of Catalysis 2011, 283 (1), 34-44.
88. Xu, J.; Shang, J.-K.; Chen, Y.; Wang, Y.; Li, Y.-X., Palladium nanoparticles supported on mesoporous carbon nitride for efficiently selective oxidation of benzyl alcohol with molecular oxygen. Applied Catalysis A: General 2017, 542, 380-388.
89. Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V., Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles. Angewandte Chemie 2006, 118 (29), 4894-4897.
90. Chen, G.-J.; Wang, J.-S.; Jin, F.-Z.; Liu, M.-Y.; Zhao, C.-W.; Li, Y.-A.; Dong, Y.-B., Pd@Cu(II)-MOF-Catalyzed Aerobic Oxidation of Benzylic Alcohols in Air with High Conversion and Selectivity. Inorganic Chemistry 2016, 55 (6), 3058-3064. |