博碩士論文 106223601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.137.170.183
姓名 艾利芬(Mokhamat Ariefin)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Synthesis of Quinoidal Benzodithiophene (BDT) Small Molecules for n-type Organic Thin Film Transistor (OTFT) Application)
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究以 BDT 為單元,開發出新的 n-type 小分子有機薄膜電晶體材料 (OTFT),藉由核心結構苯並二噻吩 (BDT) 的共軛平面性和剛性結構,使其有效改善能階差並增加吸收波段,具有高遷移率的 n-type 小分子材料。為了增加 BDT 核心系統的溶解度,在核心外側引入不同長度的醚鏈,合成出三種新型可溶性小分子材料 : BDTQ-6、BDTQ-10、BDTQ-14。利用 UV-vis 和 DPV 來分別探討 BDTQ系列在不同醚鍊長度的光學和電化學性質,並藉由熱重分析儀 (TGA) 來研究其熱穩定性性質。
摘要(英) A new series of organic optoelectronic materials were synthesized and characterized for n-type organic thin-film transistor (OTFT) application. Three novel n-type small molecules, BDTQ-14, BDTQ-10, and BDTQ-6, were synthesized and characterized. The planar conjugation and rigid structure of benzodithiophene (BDT) make it attractive for achieving highly tuneable molecular energy level and optical bandgap as well as high mobilities device. Different alkyl chain has been used to increase the solubility of BDTQ series. The optical and electrochemical properties of BDTQ series were characterized by UV-Vis and DPV. Thermal properties were investigated by TGA.
關鍵字(中) ★ 共軛平面性
★ 不同長度的醚鏈
★ 核心系統的溶解度
關鍵字(英)
論文目次 Table of Contents

摘要 v
ABSTRACT vi
ACKNOWLEDGEMENT vii
List of Figures x
List of Table xiii
CHAPTER 1 INTRODUCTION 1
1.1. Organic Semiconductor 1
1.2. Basic Properties of Semiconductor 2
1.3. Small molecule and Polymer Organic Semiconductor 4
1.4. Organic Thin Film Transistor 7
1.4.1. Working principle 8
1.4.2. Characteristic Parameters 10
1.4.3. Deposition technique 12
1.4.4. OTFT based on Fused Thiophene 14
1.5. Motivation of Research 18
CHAPTER 2 EXPERIMENTAL SECTION 21
2..1 Material 21
2..2 Synthesis Scheme 22
2..3 Methods 23
2.4. Analysis and Characterization 31
2.4.1. Nuclear Magnetic Resonance (NMR) 31
2.4.2. Ultraviolet Spektrofotometer-Visible (UV-Vis) 31
2.4.3. Thermo Gravimetric Analysis (TGA) 32
2.4.4. Differential Pulse Voltammetry (DPV) 32
CHAPTER 3 RESULT AND DISCUSSION 33
3.1. Synthesis 33
3.2. Thermal Properties 34
3.3. Optical Properties 35
3.4. Electrochemical Properties 37
CHAPTER 4 CONCLUSION 41
REFERENCE 42
APPENDIX 46
參考文獻 REFERENCE

1. Jacob, M. Organic Semiconductors: Past, Present and Future. Electronics 3, 594–597 (2014).
2. Lane, P. Physics of Organic Semiconductors. Edited by Wolfgang Brütting. ChemPhysChem 7, (2006).
3. Orgiu, E. Organic Thin-Film Transistors : an Investigation of Device Properties , Applications and Market Perspectives. (2008).
4. Vegiraju, S. et al. Solution-Processable Dithienothiophenoquinoid (DTTQ) Structures for Ambient-Stable n-Channel Organic Field Effect Transistors. Adv. Funct. Mater. 27, 1–10 (2017).
5. Geffroy, B., le Roy, P. & Prat, C. Organic light-emitting diode (OLED) technology: Materials, devices and display technologies. Polym. Int. 55, 572–582 (2006).
6. Qu, J. et al. Alkyl Chain End Group Engineering of Small Molecule Acceptors for Non-Fullerene Organic Solar Cells. ACS Appl. Energy Mater. 1, 4724–4730 (2018).
7. Zhao, X., Chaudhry, S. T. & Mei, J. Heterocyclic Building Blocks for Organic Semiconductors. Advances in Heterocyclic Chemistry 121, (Elsevier Ltd, 2017).
8. Sun, X. et al. Organic Thin-Film Transistors: Interfacial Heterogeneity of Surface Energy in Organic Field-Effect Transistors. Adv. Mater. 23, 1008–1008 (2011).
9. Hamadani, B. H. Disertation : Electronic Charge Injection and Transport in Organic Field Effect Transistors. (Rice University, 2007).
10. Dong, H., Wang, C. & Hu, W. High performance organic semiconductors for field-effect transistors. Chem. Commun, 46, 5211–5222, (2010).
11. Youn, J. et al. Novel semiconductors based on functionalized benzo[ d, d′]thieno[3,2- b;4,5- b′]dithiophenes and the effects of thin film growth conditions on organic field effect transistor performance. Chem. Mater. 22, 5031–5041 (2010).
12. Ruiz, R. et al. Pentacene Thin Film Growth. 4497–4508 (2004).
13. Ebata, H . et al. Highly Soluble [ 1 ] Benzothieno [ 3 , 2-b ] benzothiophene ( BTBT ) Derivatives for High Performance, Solution-processed Organic Field-Effect Transistors. J. Am. Chem. Soc., 129, 15732–15733 (2007).
14. Yamamoto, A., Murata, Y., Mitsui, C., Ishii, H. & Yamagishi, M. Zigzag-Elongated Fused π -Electronic Core : A Molecular Design Strategy to Maximize Charge-Carrier Mobility. 1700317, 1–8 (2018).
15. Yu, C. P. et al. Air-Stable Benzo[ c ]thiophene Diimide n -Type π-Electron Core. Org. Lett. 21, 4448-4453, (2019).
16. Wang, H. et al. Cyano-Substituted Head-to-Head Polythiophenes: Enabling High-Performance n-Type Organic Thin-Film Transistors. ACS Appl. Mater. Interfaces 11, 10089–10098 (2019).
17. Kumar, B., Kaushik, B. K. & Negi, Y. S. Organic thin film transistors: Structures, models, materials, fabrication, and applications: A review. Polym. Rev. 54, 33–111 (2014).
18. Marinov, O. . Organic Thin Film Transistors: Part I. (IEEE Trans. Electrone Device, 2009).
19. Klauk, H., Zschieschang, U. & Halik, M. Low-voltage organic thin-film transistors with large transconductance. J. Appl. Phys. 102, (2007).
20. Vegiraju, S. Synthesis and Characterization of Fused Thiophenes and Diketopyrrolopyrroles Containing Conjugated Small Molecules : Application in Organic Electronics. (National Central University, 2015).
21. Kang, M. J., Miyazaki, E., Osaka, I., Takimiya, K. & Nakao, A.Diphenyl Derivatives of Dinaptho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene: Organic Semiconductors for Thermally Stable Thin-Film Transistors, ACS APPL Mater Interfaces, 5, 2331-2336, 2013.
22. Matthews, J. R. et al. Scalable Synthesis of Fused Thiophene-Diketopyrrolopyrrole Semiconducting Polymers Processed from Nonchlorinated Solvents into High Performance Thin Film Transistors. Chem. Mater, 25, 782-789, (2013).
23. Ogawa, Y. et al. Asymmetric Alkylthienyl Thienoacenes Derived from Anthra[2,3 ‑ b ]thieno[2,3 ‑ d ]thiophene for Solution-Processable Organic Semiconductors. ACS. Appl. Mater. Interfaces, 9, 9902-9909, (2017).


24. Wu, H. et al. Pyrrolo[3,2- b]pyrrole-Based Quinoidal Compounds for High Performance n-Channel Organic Field-Effect Transistor. Chem. Mater. 30, 6992–6997 (2018).
指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2019-8-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明