博碩士論文 106223009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:17 、訪客IP:3.145.173.112
姓名 莊謝奇勳(Chuang Hsieh, Chi-Hsun)  查詢紙本館藏   畢業系所 化學學系
論文名稱 sPSU/PEI及官能基化ZrP-SH複合性材料之中高溫質子交換薄膜
(sPSU/PEI and Functionalized ZrP-SH Compose Material as High Temperature Proton Conducting Membrane)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-6-17以後開放)
摘要(中) 質子交換薄膜燃料電池在高溫下操作可以避開一氧化碳毒化觸媒的問題、提高電池的化學反應速率⋯⋯等優點。但目前已商業化的PEMFC薄膜是基於聚全氟磺酸的材料所製備而成,例如DuPont公司的Nafion系列。而高溫下操作時,水分子容易從Nafion膜中蒸發,導致離子電導率的嚴重惡化無法提供令人滿意的性能。
磷酸摻雜的polybenzimidazole(PBI)在高溫下成為高分子電解質薄膜常用的選擇,主要是因為PBI具有良好的磷酸摻雜能力,在高溫操作下仍展現高的質子導電度。然而在非常高的磷酸摻雜水平下,PBI膜容易膨脹造成機械性能下降。此外PBI 單價昂貴也造成廣泛使用的阻礙。開發具有高質子導電度、高化學穩定性同時不損失其機械完整性的高溫燃料電池薄膜成為亟待突破的材料科學研究議題。
為改善PBI機械性能下降的情況,本研究中使用高穩定性之磺酸化聚砜(sPSU)以及易摻雜磷酸之聚乙烯亞胺(PEI)進行複合。PEI是一種價格低廉、毒性低且帶有支狀結構的高分子聚合物,主鏈上含有大量的仲氨基和伯氨基以及叔氨基,可以通過產生氫鍵或酸鹼相互作用使磷酸附著且不容易脫離。除此之外加入官能基化磷酸鋯(ZrP)奈米片,形成有機/無機複合薄膜,磷酸鋯本身具有良好的物理特性,且為層狀結構,在同一平面上的原子以牢固的共價键相结合,而相鄰的層之間存在非共價相互作用,如凡德瓦爾力和静電作用力,使其層間距可以藉由修飾官能基的方式,加以調整;磷酸鋯本身也是Brønsted acid,可以提供質子,產生質子交換反應,應用於高溫質子交換薄膜時,可以提供新的質子傳遞的通道,以維持高導電度。在本研究中藉由官能基化,在磷酸鋯層間修飾了偶聯劑(MPTMS),MPTMS在鹼性環境中會進行水解反應,使之間產生Si-O共價交聯,成功改善了無機物在高分子中的相容性以及分散性,突破傳統有機/無機複合薄膜常見的不均勻性及相分離的問題,希望可以在高溫/低濕度下提高膜質子傳導率同時改善了薄膜的穩定性。
在本研究中顯示PEI隨著添加的比例增加,可以與sPSU形成較完整的交聯結構,因此複合高分子薄膜不僅展現出較好的熱穩定性外,還可以有效的提高薄膜的磷酸摻雜以及保留能力,使得這些薄膜在高溫下,還得以維持導電度,其中含有40 wt%的PEI的高溫質子導電度表現最好,在160 ºC時為1.2*10-1 S/cm,比含有50 wt%PEI的薄膜提升了9*10-2 S/cm;添加ZrP-SH由於偶聯劑(MPTMS)與高分子之間的作用力,會使薄膜的結構變得更加緻密,使磷酸摻雜量下降,進而影響薄膜的質子導電度,但是當ZrP-SH添加量>5wt%時,質子導電度會有些許提升,這是因為ZrP本身具有質子傳遞的能力,透過官能基化,可以有效改善其分散性,在缺乏磷酸的情況下,能夠與高分子之間建構新的質子傳遞通道,提高其性能;氧穩定度方面,雖然透過交聯反應可以有所改善,但依然無法適用於高溫質子交換膜燃料電池當中,為了改善這項缺失,添加ZrP-SH,透過偶聯劑(MPTMS)之間的Si-O共價交聯,建構出更穩定的結構,且MPTMS其末端官能基-SH
經過氧化能夠產生SO3H基團,提高與sPSU/PEI之間的氫鍵作用力,進而提升薄膜的抗氧化性。
摘要(英) Proton exchange membrane fuel cells operating at high temperatures can avoid the problems of carbon monoxide poisoning catalysts, increase the chemical reaction rate of batteries, etc. However, current commercial PEMFC membranes are prepared based on polyperfluorosulfonic acid materials, for example, the Nafion series of DuPont. But at high temperatures, water molecules tend to evaporate from the Nafion membrane, causing severe deterioration in ionic conductivity that does not provide satisfactory performance.
Phosphoric acid-doped polybenzimidazole (PBI) is a common choice for polymer electrolyte membranes at high temperatures because PBI has good phosphoric acid doping ability can exhibit high proton conductivity at high temperatures. However, in very high phosphoric acid, the PBI membrane will decrease the mechanical properties. In addition, the high price of PBI also causes obstacles to widespread use.
The development of high-temperature fuel cell membranes with high proton conductivity and high chemical stability without loss of mechanical integrity has become a material science research issue to be overcome.
In this study, it is shown that the PEI can form a relatively complete crosslinked structure with sPSU with the increase of the proportion of addition. Therefore, the composite polymer film not only exhibits better thermal stability but also can effectively improve the phosphoric acid doping of the membrane. In addition to retention ability, these membranes can maintain conductivity at high temperatures. Among these membranes, a membrane with 40 wt% PEI has the best high-temperature proton conductivity, 1.2*10-1 S/cm at 160 °C. Incresing PEI content to 50 wt% PEI decreased its proton conductivity by 9*10-2 S/cm.
Furthermore, addition of ZrP-SH causes the structure of the membrane to become denser due to the interaction between the coupling agent (MPTMS) and the polymer, so that the phosphoric acid doped amount is decreases, which in turn affects the proton conductivity of the membrane, but when the amount of ZrP-SH added >5wt%, the proton conductivity will increase slightly. This is because ZrP has the ability to proton transfer, which can be effectively improved by functionalization. In the absence of phosphoric acid, ZrP-SH can establish a new proton transfer channel with the polymer to improve its performance.
關鍵字(中) ★ 高溫燃料電池
★ 磷酸
★ 磷酸鋯
關鍵字(英)
論文目次 中文摘要 I
謝誌 IV
ABSTRACT V
目錄 VIII
圖目錄 XII
表目錄 XV
第一章 緒論 1
1-1 前言 1
1-2研究動機 4
第二章 高溫電解質薄膜文獻回顧 7
2-1 燃料電池簡介 7
2-2 質子交換膜種類與介紹 8
2-3高溫燃料電池的優點: 12
2-4 質子交換膜的傳遞機制 14
2-5 高溫燃料電池薄膜種類 15
2-5-1 Nafion薄膜的修飾 16
2-5-2 添加替代水分子以協助質子傳遞的化合物 16
2-5-3 添加親水性的無機氧化物 19
2-5-4 添加質子導體無機物 22
2-6 碳氫(芳香環)高分子薄膜 23
2-7 有機/無機複合高分子薄膜 35
2-8 酸/鹼高分子複合薄膜 43
2-8-1 酸性高分子/鹼性小分子 44
2-8-2 鹼性高分子/酸性小分子 46
2-8-3 酸性高分子/鹼性高分子 48
2-9 磷酸鋯(Zirconium phosphate and phosphonate)複合膜 50
第三章實驗方法與原理 60
3-1實驗儀器及技術原理 60
3-1-1場發射掃描式電子顯微鏡(FE-SEM) 60
3-1-2 X光散射光譜儀(XRD) 61
3-1-3 氧穩定性測試 62
3-1-4 薄膜摻雜磷酸之方法 62
3-1-5 熱重分析儀(TGA) 63
3-1-6 傅立葉轉換紅外光譜儀測定(FTIR) 64
3-1-7 廷得耳測試(Tyndall effect test ) 64
3-1-8 質子導電度(Proton conductivity) 65
3-2 物質合成以及薄膜的製備 65
3-2-1 磺酸化聚碸(sPSU)高分子的製備: 65
3-2-2 磷酸鋯(ZrP)的合成 67
3-2-3 磷酸鋯單層奈米片製備 67
3-2-4 磷酸鋯單層奈米片表面偶聯劑修飾的製備 68
3-2-5 有機/無機複合膜之製備 68
3-3 實驗藥品以及儀器設備 69
第四章 結果與討論 72
4-1 複合薄膜材料鑑定 73
4-1-1 高分子磺酸化程度的鑑定 73
4-1-2 無機物結構鑑定 75
4-1-3 無機物表面分析 76
4-1-4 廷德耳效應測試(Tyndall effect test) 78
4-1-5 官能基化磷酸鋯奈米片(ZrP-SH)合成鑑定 79
4-2 複合薄膜性能比較 80
4-2-1 磷酸摻雜量(Doping level test) 80
4-2-2 質子導電度測試 83
4-2-3 熱穩定性測試 86
4-2-4 氧穩定性測試 91
第五章 結論與未來展望 93
參考文獻 97
參考文獻 [1] B. C. Steele and A. Heinzel, "Materials for fuel-cell technologies," Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, pp. 224-231, 2011.
[2] R. Rosli et al., "A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system," Hydrogen Energy, vol. 42, no. 14, pp. 9293-9314, 2017.
[3] H. Y. Lee et al., "Electrospun Poly (Ether Sulfone) Membranes Impregnated with Nafion for High-Temperature Polymer Electrolyte Membrane Fuel Cells," Korean Electrochemical Society, vol. 19, no. 1, pp. 9-13, 2016.
[4] 白正偉, "磺酸化之磷酸鋯衍生物之製備與其在複合質子傳導膜上之應用," 碩士, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2011.
[5] 許嘉晉, "含有磷酸鋯衍生物之質子傳導複合膜:磷酸鋯衍生物之合成與複合膜製備及特性研究," 碩士, 材料科學與工程學研究所, 國立臺灣大學, 台北市, 2008.
[6] 劉. 成功大學材料科學及工程學系學位論文, "高溫質子交換膜燃料電池用聚苯基喹惡啉之合成與性質研究," 2015.
[7] S. L.-C. Hsu, C.-W. Liu, C.-H. Tu, H.-Y. Chuang, E. Bulycheva, and N. Belomoina, "Synthesis and properties of ABPPQ for high-temperature proton exchange membrane fuel cells," Polymer Bulletin, journal article vol. 75, no. 11, pp. 5321-5331, November 01 2018.
[8] 陳柏丞, "高磷酸摻混率之高溫質子交換膜," 碩士, 化學工程與材料科學學系, 元智大學, 桃園縣, 2015.
[9] L. W. McKeen, "High-Temperature/High-Performance Polymers," pp. 389-417, 2017.
[10] R. Naim, A. Ismail, H. Saidi, and E. Saion, "Development of sulfonated polysulfone membranes as a material for Proton Exchange Membrane (PEM)," Proceedings of the Regional Symppsium on Membrane Science Technology, pp. 21-25, 2004.
[11] N. S. Dugala, A. S. Mann, and G. Rooprai, "Fuel Cell Technology-A Basic Overview," in rd 3 National conference, 2016, p. 15.
[12] D. Raoulji, J. Patel, and M. Patel, "Review Paper on a Fuel Cell Scooter," Engineering Science, vol. 3902, 2016.
[13] A. Al Lafi, Cross Linked Sulphonated Poly(ether ether ketone) for the Development of Polymer Electrolyte Membrane Fuel Cell. 2009.
[14] B. Smitha, S. Sridhar, and A. Khan, "Solid polymer electrolyte membranes for fuel cell applications—a review," Membrane Science, vol. 259, no. 1-2, pp. 10-26, 2005.
[15] S. J. Andreasen, J. R. Vang, and S. K. Kær, "High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy," Hydrogen Energy, vol. 36, no. 16, pp. 9815-9830, 2011.
[16] R. Devanathan, "Recent developments in proton exchange membranes for fuel cells," Energy Environmental Science, vol. 1, no. 1, pp. 101-119, 2008.
[17] C. De Beer, P. S. Barendse, P. Pillay, B. Bullecks, and R. Rengaswamy, "Electrical circuit analysis of CO poisoning in high-temperature PEM fuel cells for fault diagnostics and mitigation," IEEE Transactions on Industry Applications, vol. 51, no. 1, pp. 619-630, 2015.
[18] A. Chandan et al., "High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)–A review," Power Sources, vol. 231, pp. 264-278, 2013.
[19] K. Pourzare, Y. Mansourpanah, and S. Farhadi, Advanced nanocomposite membranes for fuel cell applications: A comprehensive review. 2016, pp. 496-513.
[20] S. Bose, T. Kuila, T. X. H. Nguyen, N. H. Kim, K.-t. Lau, and J. H. Lee, "Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges," Progress in Polymer Science, vol. 36, no. 6, pp. 813-843, 2011.
[21] A. Anantaraman and C. Gardner, "Studies on ion-exchange membranes. Part 1. Effect of humidity on the conductivity of Nafion®," Electroanalytical Chemistry, vol. 414, no. 2, pp. 115-120, 1996.
[22] R. Savinell et al., "A polymer electrolyte for operation at temperatures up to 200 ºC," Electrochemical Society, vol. 141, no. 4, pp. L46-L48, 1994.
[23] Z. Florjańczyk, E. Wielgus-Barry, and Z. Połtarzewski, "Radiation-modified Nafion membranes for methanol fuel cells," Solid State Ionics, vol. 145, no. 1-4, pp. 119-126, 2001.
[24] M. Doyle, S. K. Choi, and G. Proulx, "High-temperature proton conducting membranes based on perfluorinated ionomer membrane-ionic liquid composites," Electrochemical Society, vol. 147, no. 1, pp. 34-37, 2000.
[25] J. Sun, L. Jordan, M. Forsyth, and D. MacFarlane, "Acid–organic base swollen polymer membranes," Electrochimica acta, vol. 46, no. 10-11, pp. 1703-1708, 2001.
[26] Y.-Z. Fu and A. Manthiram, "Nafion–imidazole–H3PO4 composite membranes for proton exchange membrane fuel cells," The Electrochemical Society, vol. 154, no. 1, pp. B8-B12, 2007.
[27] H. Zhang, Q. Hu, X. Zheng, Y. Yin, H. Wu, and Z. Jiang, "Incorporating phosphoric acid-functionalized polydopamine into Nafion polymer by in situ sol-gel method for enhanced proton conductivity," Membrane Science, vol. 570, pp. 236-244, 2019.
[28] J. Hao et al., "Development of proton-conducting membrane based on incorporating a proton conductor 1, 2, 4-triazolium methanesulfonate into the Nafion membrane," Energy Chemistry, vol. 24, no. 2, pp. 199-206, 2015.
[29] K. Adjemian, S. Srinivasan, J. Benziger, and A. Bocarsly, "Investigation of PEMFC operation above 100 ºC employing perfluorosulfonic acid silicon oxide composite membranes," Power Sources, vol. 109, no. 2, pp. 356-364, 2002.
[30] P. Antonucci, A. Arico, P. Cretı, E. Ramunni, and V. Antonucci, "Investigation of a direct methanol fuel cell based on a composite Nafion®-silica electrolyte for high temperature operation," Solid State Ionics, vol. 125, no. 1-4, pp. 431-437, 1999.
[31] N. Miyake, J. Wainright, and R. Savinell, "Evaluation of a sol-gel derived Nafion/silica hybrid membrane for polymer electrolyte membrane fuel cell applications: II. Methanol uptake and methanol permeability," Electrochemical Society, vol. 148, no. 8, pp. A905-A909, 2001.
[32] A. Sacca et al., "Nafion–TiO2 hybrid membranes for medium temperature polymer electrolyte fuel cells (PEFCs)," Power Sources, vol. 152, pp. 16-21, 2005.
[33] B. Matos, E. Aricó, M. Linardi, A. Ferlauto, E. Santiago, and F. Fonseca, "Thermal properties of Nafion–TiO2 composite electrolytes for PEM fuel cell," Thermal Analysis Calorimetry, vol. 97, no. 2, pp. 591-594, 2009.
[34] 張慈容, "氯氧化鋯摻合Nafion溶液性質及聚四氟碳化物/Nafion/磷酸鋯複合膜製作," 碩士, 化學工程與材料科學學系, 元智大學, 桃園縣, 2007.
[35] N. H. Jalani, K. Dunn, and R. Datta, "Synthesis and characterization of Nafion®-MO2 (M= Zr, Si, Ti) nanocomposite membranes for higher temperature PEM fuel cells," Electrochimica Acta, vol. 51, no. 3, pp. 553-560, 2005.
[36] S.-H. Kwak, T.-H. Yang, C.-S. Kim, and K. H. Yoon, "Nafion/mordenite hybrid membrane for high-temperature operation of polymer electrolyte membrane fuel cell," Solid State Ionics, vol. 160, no. 3-4, pp. 309-315, 2003.
[37] Z. Wang et al., "Synthesis of Nafion/CeO2 hybrid for chemically durable proton exchange membrane of fuel cell," Membrane Science, vol. 421, pp. 201-210, 2012.
[38] Y. Zhai, H. Zhang, J. Hu, and B. Yi, "Preparation and characterization of sulfated zirconia (SO42−/ZrO2)/Nafion composite membranes for PEMFC operation at high temperature/low humidity," Membrane Science, vol. 280, no. 1-2, pp. 148-155, 2006.
[39] D. Cozzi, C. de Bonis, A. D′Epifanio, B. Mecheri, A. C. Tavares, and S. Licoccia, "Organically functionalized titanium oxide/Nafion composite proton exchange membranes for fuel cells applications," Power Sources, vol. 248, pp. 1127-1132, 2014.
[40] P. Costamagna, C. Yang, A. Bocarsly, and S. Srinivasan, "Nafion® 115/zirconium phosphate composite membranes for operation of PEMFCs above 100 C," Electrochimica acta, vol. 47, no. 7, pp. 1023-1033, 2002.
[41] V. Ramani, H. Kunz, and J. Fenton, "Effect of particle size reduction on the conductivity of Nafion®/phosphotungstic acid composite membranes," Membrane Science, vol. 266, no. 1-2, pp. 110-114, 2005.
[42] Z.-G. Shao, P. Joghee, and I.-M. Hsing, "Preparation and characterization of hybrid Nafion–silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells," Membrane Science, vol. 229, no. 1-2, pp. 43-51, 2004.
[43] C.-Y. Yen et al., "Sol–gel derived sulfonated-silica/Nafion® composite membrane for direct methanol fuel cell," Power Sources, vol. 173, no. 1, pp. 36-44, 2007.
[44] K. Kreuer, "KD Kreuer, J. Membr. Sci. 185, 29 (2001)," Membr. Sci., vol. 185, p. 29, 2001.
[45] N. Bogolowski and J.-F. Drillet, "Appropriate balance between methanol yield and power density in portable direct methanol fuel cell," Chemical Engineering Journal, vol. 270, pp. 91-100, 2015.
[46] J. Wainright, J. T. Wang, D. Weng, R. Savinell, and M. Litt, "Acid-doped polybenzimidazoles: a new polymer electrolyte," Electrochemical Society, vol. 142, no. 7, pp. L121-L123, 1995.
[47] Z. Chang, H. Pu, D. Wan, L. Liu, J. Yuan, and Z. Yang, "Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells," Polymer Degradation, vol. 94, no. 8, pp. 1206-1212, 2009.
[48] Q. Li et al., "Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes," Membrane Science, vol. 347, no. 1-2, pp. 260-270, 2010.
[49] K. Firouz Tadavani, A. Abdolmaleki, M. R. Molavian, and M. Zhiani, "A Promising Proton-Exchange Membrane: High Efficiency in Low Humidity," ACS Applied Energy Materials, vol. 1, no. 6, pp. 2464-2473, 2018.
[50] M. Kawahara, M. Rikukawa, K. Sanui, and N. Ogata, "Synthesis and proton conductivity of sulfopropylated poly (benzimidazole) films," Solid State Ionics, vol. 136, pp. 1193-1196, 2000.
[51] 程伯揚, "聚苯咪唑薄膜與磺酸化咪唑/聚苯咪唑薄膜於高溫型質子交換膜燃料電池性能研究," 碩士, 材料科學及工程學系, 國立成功大學, 台南市, 2016.
[52] T. Ko et al., "Sulfonated poly (arylene ether sulfone) composite membranes having poly (2, 5-benzimidazole)-grafted graphene oxide for fuel cell applications," Materials Chemistry A, vol. 3, no. 41, pp. 20595-20606, 2015.
[53] R. S. Malik, P. Verma, and V. Choudhary, "A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application," Electrochimica Acta, vol. 152, pp. 352-359, 2015.
[54] Z. Yue, Y.-B. Cai, and S. Xu, "Phosphoric acid-doped cross-linked sulfonated poly (imide-benzimidazole) for proton exchange membrane fuel cell applications," Membrane Science, vol. 501, pp. 220-227, 2016.
[55] K. Kim, P. Heo, J. Han, J. Kim, and J.-C. Lee, "End-group cross-linked sulfonated poly (arylene ether sulfone) via thiol-ene click reaction for high-performance proton exchange membrane," Power Sources, vol. 401, pp. 20-28, 2018.
[56] M. Kumari, H. Sodaye, and R. Bindal, "Cross-linked sulfonated poly (ether ether ketone)-poly ethylene glycol/silica organic–inorganic nanocomposite membrane for fuel cell application," Power Sources, vol. 398, pp. 137-148, 2018.
[57] H. B. Park, C. H. Lee, J. Y. Sohn, Y. M. Lee, B. D. Freeman, and H. J. Kim, "Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties," Membrane Science, vol. 285, no. 1-2, pp. 432-443, 2006.
[58] C. H. Lee, C. H. Park, and Y. M. Lee, "Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications," Membrane Science, vol. 313, no. 1-2, pp. 199-206, 2008.
[59] S. Bano, Y. S. Negi, R. Illathvalappil, S. Kurungot, and K. Ramya, "Studies on nano composites of SPEEK/ethylene glycol/cellulose nanocrystals as promising proton exchange membranes," Electrochimica Acta, vol. 293, pp. 260-272, 2019.
[60] 郝金凱, 姜永燚, 王禛李, 曉錦邵, 志剛, and 衣寶廉, "高溫質子交換膜燃料電池用聚苯並咪唑/聚乙烯基芐基交聯膜的製備與性能研究," 電化学, vol. 21, no. 5, pp. 441-448, 2015.
[61] O. Gil-Castell, D. Galindo-Alfaro, S. Sánchez-Ballester, R. Teruel-Juanes, J. D. Badia, and A. Ribes-Greus, "Crosslinked Sulfonated Poly (vinyl alcohol)/Graphene Oxide Electrospun Nanofibers as Polyelectrolytes," Nanomaterials, vol. 9, no. 3, p. 397, 2019.
[62] L. J. Murray, M. Dincă, and J. R. Long, "Hydrogen storage in metal–organic frameworks," Chemical Society Reviews, vol. 38, no. 5, pp. 1294-1314, 2009.
[63] H. Chen et al., "High conductive, long-term durable, anhydrous proton conductive solid-state electrolyte based on a metal-organic framework impregnated with binary ionic liquids: Synthesis, characteristic and effect of anion," Power Sources, vol. 376, pp. 168-176, 2018.
[64] N. Anahidzade, A. Abdolmaleki, M. Dinari, K. F. Tadavani, and M. Zhiani, "Metal-organic framework anchored sulfonated poly (ether sulfone) as a high temperature proton exchange membrane for fuel cells," Membrane Science, vol. 565, pp. 281-292, 2018.
[65] J. H. Lee, J. C. Lee, J. T. Park, and W. Jeon. (2016). Metal air fuel cell.
[66] M. Aparicio, A. Jitianu, and L. C. Klein, Sol-gel processing for conventional and alternative energy. Springer Science & Business Media, 2012.
[67] V. Souza and M. Quadri, "Organic-inorganic hybrid membranes in separation processes: a 10-year review," Chemical Engineering Journal, vol. 30, no. 4, pp. 683-700, 2013.
[68] N. A. Riensch et al., "Borazine-based inorganic–organic hybrid cyclomatrix microspheres by silicon/boron exchange precipitation polycondensation," Polymer Chemistry, vol. 8, no. 35, pp. 5264-5268, 2017.
[69] Y. Ying, S. Kamarudin, and M. Masdar, "Silica-related membranes in fuel cell applications: An overview," Hydrogen Energy, 2018.
[70] K. A. Mauritz, "Organic-inorganic hybrid materials: perfluorinated ionomers as sol-gel polymerization templates for inorganic alkoxides," Materials Science Engineering: C, vol. 6, no. 2-3, pp. 121-133, 1998.
[71] J. Li, G. Xu, X. Luo, J. Xiong, Z. Liu, and W. Cai, "Effect of nano-size of functionalized silica on overall performance of swelling-filling modified Nafion membrane for direct methanol fuel cell application," Applied Energy, vol. 213, pp. 408-414, 2018.
[72] S. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, "Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells," Membrane Science, vol. 203, no. 1-2, pp. 215-225, 2002.
[73] C.-C. Yang, S.-J. Chiu, K.-T. Lee, W.-C. Chien, C.-T. Lin, and C. A. Huang, Study of poly(vinyl alcohol)/titanium oxide composite polymer membranes and their application on alkaline direct alcohol fuel cell. 2008, pp. 44-51.
[74] Y.-H. Su et al., "Proton exchange membranes modified with sulfonated silica nanoparticles for direct methanol fuel cells," Membrane Science, vol. 296, no. 1-2, pp. 21-28, 2007.
[75] V. K. Shahi, "Highly charged proton-exchange membrane: sulfonated poly (ether sulfone)-silica polyelectrolyte composite membranes for fuel cells," Solid State Ionics, vol. 177, no. 39-40, pp. 3395-3404, 2007.
[76] 張志堅, 花蕾, 李煥興, and 崔麗榮, "矽烷偶聯劑在玻纖增強複合材料領域中的應用," 2013.
[77] S. Todo. ( 2014). Metal primer ,silane,zirconia primer Reviews.
[78] C. Prapainainar, S. Kanjanapaisit, P. Kongkachuichay, S. M. Holmes, and P. Prapainainar, "Surface modification of mordenite in Nafion composite membrane for direct ethanol fuel cell and its characterizations: Effect of types of silane coupling agent," Environmental Chemical Engineering, vol. 4, no. 3, pp. 2637-2646, 2016.
[79] H. Chen et al., "Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications," Chemical Engineers, vol. 95, pp. 185-194, 2019/02/01/ 2019.
[80] M. Yamada and I. Honma, "Anhydrous proton conducting polymer electrolytes based on poly (vinylphosphonic acid)-heterocycle composite material," Polymer vol. 46, no. 9, pp. 2986-2992, 2005.
[81] Y. Fu, W. Li, and A. Manthiram, "Sulfonated polysulfone with 1, 3-1H-dibenzimidazole-benzene additive as a membrane for direct methanol fuel cells," Membrane Science, vol. 310, no. 1-2, pp. 262-267, 2008.
[82] Q. Tang, K. Huang, G. Qian, and B. C. Benicewicz, "Phosphoric acid-imbibed three-dimensional polyacrylamide/poly (vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane," Power Sources, vol. 229, pp. 36-41, 2013.
[83] Z. Li, Y. Yin, and L. Liu, "Three–Dimensional Polyacrylamide–Poly (Ethylene Glycol)/Phosphoric Acid for High–Temperature Proton Exchange Membranes," Polymers Polymer Composites, vol. 23, no. 3, pp. 151-158, 2015.
[84] W. H. Chen et al., "Stimuli-Responsive Nucleic Acid-Based Polyacrylamide Hydrogel-Coated Metal-Organic Framework Nanoparticles for Controlled Drug Release," Advanced Functional Materials, vol. 28, no. 8, p. 1705137, 2018.
[85] F. Bu et al., "1, 2, 4-Triazole functionalized poly (arylene ether ketone) for high temperature proton exchange membrane with enhanced oxidative stability," Membrane Science, vol. 545, pp. 167-175, 2018.
[86] J. Wang, H. Bai, H. Zhang, L. Zhao, H. Chen, and Y. Li, "Anhydrous proton exchange membrane of sulfonated poly (ether ether ketone) enabled by polydopamine-modified silica nanoparticles," Electrochimica Acta, vol. 152, pp. 443-455, 2015.
[87] H. R. Lohokare, H. D. Chaudhari, and U. K. Kharul, "Solvent and pH-stable poly (2, 5-benzimidazole)(ABPBI) based UF membranes: Preparation and characterizations," Membrane Science, vol. 563, pp. 743-751, 2018.
[88] X. Baozhong and O. Savadogo, "The Effect of Acid Doping on the Conductivity of Polybenzimidazole (PBI)[J]," New Materials for Electrochemical Systems, vol. 2, pp. 95-102, 1999.
[89] M. Kawahara, J. Morita, M. Rikukawa, K. Sanui, and N. Ogata, "Synthesis and proton conductivity of thermally stable polymer electrolyte: poly (benzimidazole) complexes with strong acid molecules," Electrochimica Acta, vol. 45, no. 8-9, pp. 1395-1398, 2000.
[90] L. Qingfeng, H. A. Hjuler, and N. Bjerrum, "Phosphoric acid doped polybenzimidazole membranes: physiochemical characterization and fuel cell applications," Applied Electrochemistry, vol. 31, no. 7, pp. 773-779, 2001.
[91] S. Narayanan, S.-P. Yen, L. Liu, and S. Greenbaum, "Anhydrous proton-conducting polymeric electrolytes for fuel cells," Physical Chemistry B, vol. 110, no. 9, pp. 3942-3948, 2006.
[92] H. Zhang, X. Li, C. Zhao, T. Fu, Y. Shi, and H. Na, "Composite membranes based on highly sulfonated PEEK and PBI: Morphology characteristics and performance," Membrane Science, vol. 308, no. 1, pp. 66-74, 2008/02/01/ 2008.
[93] N. N. Krishnan et al., "Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells," Membrane Science, vol. 544, pp. 416-424, 2017/12/15/ 2017.
[94] C. Yang, S. Srinivasan, A. B. Bocarsly, S. Tulyani, and J. B. Benziger, "A comparison of physical properties and fuel cell performance of Nafion and zirconium phosphate/Nafion composite membranes," Membrane Science, vol. 237, no. 1, pp. 145-161, 2004/07/01/ 2004.
[95] I. K. Deshapriya and C. V. Kumar, "Chapter Eight - Rationally Designed, “Stable-on-the-Table” NanoBiocatalysts Bound to Zr(IV) Phosphate Nanosheets," in Methods in Enzymology, vol. 571, C. V. Kumar, Ed.: Academic Press, 2016, pp. 151-175.
[96] W. H. J. Hogarth, J. C. Diniz da Costa, and G. Q. Lu, "Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells," Power Sources, vol. 142, no. 1, pp. 223-237, 2005/03/24/ 2005.
[97] Y. Zhou et al., "Sulfonic acid-functionalized α-zirconium phosphate single-layer nanosheets as a strong solid acid for heterogeneous catalysis applications," Applied Materials, vol. 6, no. 10, pp. 7417-7425, 2014.
[98] Y. Özdemir, N. Üregen, and Y. Devrim, "Polybenzimidazole based nanocomposite membranes with enhanced proton conductivity for high temperature PEM fuel cells," Hydrogen Energy, vol. 42, no. 4, pp. 2648-2657, 2017.
[99] H.-C. Kuan, C.-S. Wu, C.-Y. Chen, Z.-Z. Yu, A. Dasari, and Y.-W. Mai, "Preparation of exfoliated zirconium phosphate/Nafion organic-inorganic hybrid proton exchange membranes," Electrochemical solid-state letters, vol. 9, no. 2, pp. A76-A79, 2006.
[100] G. Alberti, M. Casciola, U. Costantino, A. Peraio, and E. Montoneri, "Protonic conductivity of layered zirconium phosphonates containing -SO3H groups. I. Preparation and characterization of a mixed zirconium phosphonate of composition Zr(O3PR)0.73(O3PR‘)1.27·nH2O, with R=-C6H4-SO3H and R‘= -CH2−OH," Solid State Ionics, vol. 50, no. 3, pp. 315-322, 1992/02/01/ 1992.
[101] 席妮瑪, "燃料電池用之磺酸化磷酸鋯/全氟磺酸高分子複合膜之合成與鑑定," 碩士, 化學工程學系碩博士班, 國立成功大學, 台南市, 2009.
[102] S. Baskaran, Structure and Regulation of Yeast Glycogen Synthase. 2010.
[103] R. Naim, A. Ismail, H. Saidi, and E. Saion, "Development of sulfonated polysulfone membranes as a material for Proton Exchange Membrane (PEM)," Proceedings of the Regional Symppsium on Membrane Science Technology, Puteri Pan Pacific Hotel, Johor Bharu, Malaysia, pp. 21-25, 2004.
[104] L. Sun et al., "The effect of guest molecular architecture and host crystallinity upon the mechanism of the intercalation reaction," Colloid and Interface Science, vol. 333, no. 2, pp. 503-509, 2009/05/15/ 2009.
[105] Z. Wang, Y. Feng, X. Hao, W. Huang, and X. Feng, "A novel potential-responsive ion exchange film system for heavy metal removal," Materials Chemistry A, vol. 2, no. 26, pp. 10263-10272, 2014.
[106] V. Ambrogi, W. Brostow, C. Carfagna, M. Pannico, and P. Persico, "Plasticizer migration from cross-inked flexible PVC: Effects on tribology and hardness," Polymer Engineering Science, vol. 52, no. 1, pp. 211-217, 2012.
[107] H. Jang et al., "Studies of sulfonated poly (phenylene)-block-poly (ethersulfone) for proton exchange membrane fuel cell," Journal of Hydrogen Energy, vol. 42, no. 17, pp. 12768-12776, 2017.
[108] M. Vinothkannan, A. R. Kim, J.-M. Yoon, and D. J. Yoo, "Toward improved mechanical strength, oxidative stability and proton conductivity of an aligned quadratic hybrid (SPEEK/FPAPB/Fe₃O₄-FGO) membrane for application in high temperature and low humidity fuel cells," RSC Advances, vol. 7, no. 62, pp. 39034-39048, 2017.
[109] H. Ni′mah, W.-F. Chen, Y.-C. Shen, and P.-L. Kuo, "Sulfonated nanoplates in proton conducting membranes for fuel cells," RSC Advances, vol. 1, no. 6, pp. 968-972, 2011.
指導教授 諸柏仁(Po-Jen Chu) 審核日期 2019-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明