博碩士論文 106223019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:3.12.161.168
姓名 葉珈伶(Chia-Ling Yeh)  查詢紙本館藏   畢業系所 化學學系
論文名稱 官能基化二氧化鈦複合電解質於固態鋰電池研究
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 為提升固態電解質應用在鋰電池中的各項性能,如導電度、充放電表現與介面相容性等等的性質,許多研究指出在聚合物電解質中加入無機物可有效提升導電性、介面相容性,並且降低高分子的結晶性以提升高分子的鏈段移動率。但無機物添加過多時將在電解質中產生聚集的現象,降低無機物表面積,與鋰鹽或離子液體、高分子的作用力較差而損傷其功效,因此藉由官能基化使無機物能夠高度均勻分散成為目前重要的研究方向。
  本實驗研究以PVdF-HFP與PMMA為高分子主體,加入離子液體作為塑化劑及液體電解質之替代品,再以官能基化後的TiO2-PMMA為填充物,可有效提升導電度與介面相容性。作為官能基的PMMA則可提升與高分子基材的相容性以及介面穩定性,此外,官能基化帶來的效果是防止TiO2嚴重聚集,在系統中可添加更多的TiO2來提升各項性質。本實驗探討了官能基化無機物對電解質中離子傳導的機制與製作成半電池後的電性表現。此方法製作出的電解質在室溫下具有最高的導電度為2.71×10-3 S/cm,以0.1C充放電得到的放電電容最高達到150 mAh/g。也說明本研究製作的官能基化無機物電產生一款具有絕佳安全性與導電度的新穎固態電解質,可望能應用在大規模化工業生產的固態電池上。
摘要(英) Polymer electrolytes (PEs) offer several advantages over concentional electrolytes. For example: it improves safety (relative to commercial electrolytes), shows good mechanical stability; thermal stability and higher energy density. But their low room temperature ionic conductivity limits their wider application in advanced batteries.
Incooperating inorganic nanofillers in PEs is an effective means to improve ion conductivity and reduce interfacial stability. However, high surface energies of nanoparticles tends to aggregate and cluster easily which lowers the surface area. Aggregation of nanoparticles may block the ion transport pathway in polymer matrix. Surface modification on nanoparticles ia an effective approach to avoid aggregation, and proper choice of the functional groups can induce better miscibility between the particle and the base polymer leading to enhanced property advantageous for solid state lithium batteries.
Here, we successfully prepared the funtionallized-TiO2 (FTiO2) by surface modification of PMMA on TiO2 nanoparticle. We then incooperate FTiO2 in PVdF-HFP/PMMA system with ionic liquid (EMIMTFSI) as the plasticizer. PMMA on TiO2 surface provide good compatibility with polymer matrix and adhesion property with electrode,where the interface resistance is substantially reduced. The FTiO2 composite polymer electrolyte (CPE) exhibit fair ion conductivity at 20℃ (2.71×10-3 S/cm) with improved interfacial resistance. Lithium battery half cells using FTiO2 CPE with LiFePO4 as cathode, show durable cyclic capacity at 150 mAh/g at 0.1C-rate. The result suggested the novel polymer electrolyte by incorporating surface functionalized TiO2 and the use of ionic liquid as the plastizer demonstrated superb ionic conductivity and low interface resistance, and is highly promising to be used in next generation all solid state lithium battery.
關鍵字(中) ★ 官能基化
★ 固態鋰電池
★ 離子液體
★ 膠態電解質
★ 二氧化鈦
★ 高分子
關鍵字(英) ★ PMMA
★ PVdF-HFP
★ RTIL
★ GPE
★ TiO2
論文目次 摘要 I
ABSTRACT II
圖目錄 VII
表目錄 XI
第一章、緒論 1
1-1 研究背景 1
1-2 研究動機 2
第二章、文獻回顧 4
2-1 鋰離子電池的簡介與工作原理 4
2-2 聚合物電解質 6
2.2.1. 固體電解質 6
2.2.2. 膠體電解質 9
2.2.3. PVdF-HFP/PMMA混摻系統 13
2-3 聚合物電解質的傳導機制 17
2-4 聚合物電解質的目的性質 23
2-5 無機複合電解質 25
2.5.1. 無機複合電解質的發展 27
2.5.2. 官能基化無機複合電解質 33
2.5.3. 無機複合電解質的傳導機制 44
2-6 離子液體 47
2.6.1. 離子液體的性質 48
2.6.2. 離子液體作為電解質之介紹 50
第三章、實驗方法 54
3-1 實驗藥品、器材與儀器設備 54
3.1.1. 實驗藥品 54
3.1.2. 實驗器材 56
3.1.3. 儀器設備 56
3-2 實驗步驟 57
3.2.1. 官能基化無機物FTiO2之製備 57
3.2.2. 離子液體之配置 57
3.2.3. 複合電解質薄膜之製備 58
3.2.4. 正極材料之製備 58
3.2.5. 鈕扣型電池之組合 59
第四章、實驗結果與討論 60
4-1 FTIO2的合成鑑定 61
4-2 無機物的分散程度探討 63
4-3 無機物對於結晶性與熱穩定性之影響 67
4-4 官能基化複合電解質之導電行為 71
4.4.1. 活化能與傳導機制 75
4.4.2. 鋰離子遷移系數 80
4-5 官能基化複合電解質之半電池測試 82
4.5.1. 介面電阻 83
4.5.2. 充放電行為 86
4.5.3. 極化現象 90
第五章、總結與未來展望 92
5-1 總結 92
5-2 未來展望 93
參考資料 95
參考文獻 [1] 劉季清. (2017). 三星正式說明:三大原因造成 Galaxy Note 7 事故! [Online]. Available: https://3c.ltn.com.tw/news/28440.
[2] 段振斌, "1-Butyl-3-methylimidazolium bis(trifluoromethyl sulfonyl)imide與二氧化鈦奈米管改質之非揮發鋰電池電解液之研究," 碩士論文, 國立中央大學, 2014.
[3] 王知行, "電場誘導有序排列之高導電度複合固態電解質," 碩士論文, 化學學系, 國立中央大學, 2016.
[4] 張倚涵, "電場誘導高離子導向之混摻高分子固態電解質," 碩士論文, 化學學系, 國立中央大學, 2016.
[5] 鄭兆軒, "電場誘導高導電度TiO2奈米材料高分子複合薄膜於鋰離子電池的應用," 碩士論文, 化學學系, 國立中央大學, 2018.
[6] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, and X. Zhang, "A review of recent developments in membrane separators for rechargeable lithium-ion batteries," Energy & Environmental Science, 10.1039/C4EE01432D vol. 7, no. 12, pp. 3857-3886, 2014.
[7] D. E. Fenton, "Complexes of alkali metal ions with poly(ethylene oxide)," Polymer vol. 14 1973.
[8] M. Armand, "Polymer solid electrolytes-an overview," Solid State Ionics, vol. 9, pp. 745-754, 1983.
[9] K. M. Abraham, and Alamgir. M., "Li+-Conductive Solid Polymer Electrolytes with Liquid-Like Conductivity," Journal of The Electrochemical Society, vol. 137, no. 5, pp. 1657-1658, 1990.
[10] L. Yue, J. Ma, J. Zhang, J. Zhao, S. Dong, Z. Liu, G. Cui, and L. Chen, "All solid-state polymer electrolytes for high-performance lithium ion batteries," Energy Storage Materials, vol. 5, pp. 139-164, 2016.
[11] R. Tanaka, Sakurai, M., Sekiguchi, H., Mori, H., Murayama, T., and Ooyama, T., "Lithium ion conductivity in polyoxyethylene/polyethylenimine blends.," Electrochimica Acta, vol. 46, no. 10-11, pp. 1709–1715, 2001.
[12] E. Tsuchida, Ohno, H., Tsunemi, K., and Kobayashi, N, "Lithium ionic conduction in poly (methacrylic acid)-poly (ethylene oxide) complex containing lithium perchlorate," Solid State Ionics, vol. 11, no. 3, pp. 227-233, 1983.
[13] F. Yuan, H.-Z. Chen, H.-Y. Yang, H.-Y. Li, and M. Wang, "PAN–PEO solid polymer electrolytes with high ionic conductivity," Materials Chemistry and Physics, vol. 89, no. 2-3, pp. 390-394, 2005.
[14] H. Hong, Liquan, C., Xuejie, H., and Rongjian, X. , "Studies on PAN-based lithium salt complex," Electrochimica acta vol. 37, no. 9, pp. 1671-1673, 1992.
[15] R. Khurana, J. L. Schaefer, L. A. Archer, and G. W. Coates, "Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries," Journal of the American Chemical Society, vol. 136, no. 20, pp. 7395-402, May 21 2014.
[16] 吳宇平, 張漢平, 吳鋒, and 李朝暉, 聚合物鋰離子電池 Polymer lithium ion batteries. 2007.
[17] G. Feuillade, and Ph Perche., "Ion-conductive macromolecular gels and membranes for solid lithium cells," Journal of Applied Electrochemistry, vol. 5, no. 1, pp. 63-69, 1975.
[18] F. Liu, N. A. Hashim, Y. Liu, M. R. M. Abed, and K. Li, "Progress in the production and modification of PVDF membranes," Journal of Membrane Science, vol. 375, no. 1-2, pp. 1-27, 2011.
[19] J. Y. Song, Wang, Y. Y., and Wan, C. C., "Review of gel-type polymer electrolytes for lithium-ion batteries," Journal of Power Sources, vol. 77 no. 2, pp. 183–197, 1999.
[20] I. E. Kelly, Owen, J. R., and Steele, B. C. H. , "Poly (ethylene oxide) electrolytes for operation at near room temperature," Journal of Power Sources, vol. 14, no. 1-3, pp. 13-21, 1985.
[21] E. H. Cha, D. R. Macfarlane, M. Forsyth, and C. W. Lee, "Ionic conductivity studies of polymeric electrolytes containing lithium salt with plasticizer," Electrochimica Acta, vol. 50, no. 2-3, pp. 335-338, 2004.
[22] B. Huang, Wang, Z., Chen, L., Xue, R., and Wang, F. , "The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes," Solid State Ionics, vol. 91, no. 3-4, pp. 279-284, 1996.
[23] P. Raghavan, Choi, J. W., Ahn, J. H., Cheruvally, G., Chauhan, G. S., Ahn, H. J., and Nah, C., "Novel electrospun poly (vinylidene fluoride-co-hexafluoropropylene)–in situ SiO2 composite membrane-based polymer electrolyte for lithium batteries," Journal of Power Sources, vol. 184, no. 2, pp. 437-443, 2008.
[24] P. Raghavan, Manuel, J., Zhao, X., Kim, D. S., Ahn, J. H., and Nah, C., "Preparation and electrochemical characterization of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for lithium batteries," Journal of Power Sources, vol. 196, no. 16, pp. 6742-6749, 2011.
[25] T. Iijima, Y. Toyoguchi, and N. Eda, "Quasi-solid organic electrolytes gelatinized with polymethyl-methacrylate and their applications for lithium batteries," Denki Kagaku, vol. 53, no. 8, pp. 619-623, 1985.
[26] G. Appetecchi, F. Croce, and B. Scrosati, "Kinetics and stability of the lithium electrode in poly (methylmethacrylate)-based gel electrolytes," Electrochimica Acta, vol. 40, no. 8, pp. 991-997, 1995.
[27] W. Zhai, H.-j. Zhu, L. Wang, X.-m. Liu, and H. Yang, "Study of PVDF-HFP/PMMA blended micro-porous gel polymer electrolyte incorporating ionic liquid [BMIM] BF4 for Lithium ion batteries," Electrochimica Acta, vol. 133, pp. 623-630, 2014.
[28] D. Song, C. Xu, Y. Chen, J. He, Y. Zhao, P. Li, W. Lin, and F. Fu, "Enhanced thermal and electrochemical properties of PVDF-HFP/PMMA polymer electrolyte by TiO2 nanoparticles," Solid State Ionics, vol. 282, pp. 31-36, 2015.
[29] F. Boudin, X. Andrieu, C. Jehoulet, and I. Olsen, "Microporous PVdF gel for lithium-ion batteries," Journal of Power Sources, vol. 81, pp. 804-807, 1999.
[30] M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, and I. Shinohara, "High lithium ionic conductivity of polymeric solid electrolytes," Die Makromolekulare Chemie, Rapid Communications, vol. 2, no. 12, pp. 741-744, 1981.
[31] E. Tsuchida, H. Ohno, and K. Tsunemi, "Conduction of lithium ions in polyvinylidene fluoride and its derivatives—I," Electrochimica Acta, vol. 28, no. 5, pp. 591-595, 1983.
[32] C. Capiglia, Y. Saito, H. Kataoka, T. Kodama, E. Quartarone, and P. Mustarelli, "Structure and transport properties of polymer gel electrolytes based on PVdF-HFP and LiN (C2F5SO2)2," Solid State Ionics, vol. 131, no. 3-4, pp. 291-299, 2000.
[33] D. Saikia and A. Kumar, "Ionic conduction in P (VDF-HFP)/PVDF–(PC+ DEC)–LiClO4 polymer gel electrolytes," Electrochimica acta, vol. 49, no. 16, pp. 2581-2589, 2004.
[34] A. Eftekhari, Future Lithium-ion Batteries. Royal Society of Chemistry, 2019.
[35] K. Murata, S. Izuchi, and Y. Yoshihisa, "An overview of the research and development of solid polymer electrolyte batteries," Electrochimica acta, vol. 45, no. 8-9, pp. 1501-1508, 2000.
[36] P. Martins, A. Lopes, and S. Lanceros-Mendez, "Electroactive phases of poly (vinylidene fluoride): determination, processing and applications," Progress in polymer science, vol. 39, no. 4, pp. 683-706, 2014.
[37] A. J. Lovinger, "Annealing of poly (vinylidene fluoride) and formation of a fifth phase," Macromolecules, vol. 15, no. 1, pp. 40-44, 1982.
[38] P. Martins, C. Caparros, R. Gonçalves, P. Martins, M. Benelmekki, G. Botelho, and S. Lanceros-Mendez, "Role of nanoparticle surface charge on the nucleation of the electroactive β-poly (vinylidene fluoride) nanocomposites for sensor and actuator applications," The Journal of Physical Chemistry C, vol. 116, no. 29, pp. 15790-15794, 2012.
[39] C. Ribeiro, V. Sencadas, J. L. G. Ribelles, and S. Lanceros-Méndez, "Influence of processing conditions on polymorphism and nanofiber morphology of electroactive poly (vinylidene fluoride) electrospun membranes," Soft Materials, vol. 8, no. 3, pp. 274-287, 2010.
[40] V. Sencadas, R. Gregorio Filho, and S. Lanceros-Mendez, "Processing and characterization of a novel nonporous poly (vinilidene fluoride) films in the β phase," Journal of Non-Crystalline Solids, vol. 352, no. 21-22, pp. 2226-2229, 2006.
[41] S. Abbrent, J. Plestil, D. Hlavata, J. Lindgren, J. Tegenfeldt, and Å. Wendsjö, "Crystallinity and morphology of PVdF–HFP-based gel electrolytes," Polymer, vol. 42, no. 4, pp. 1407-1416, 2001.
[42] S. Schneider, X. Drujon, J. Wittmann, and B. Lotz, "Impact of nucleating agents of PVDF on the crystallization of PVDF/PMMA blends," Polymer, vol. 42, no. 21, pp. 8799-8806, 2001.
[43] C. Berthier, W. Gorecki, M. Minier, M. Armand, J. Chabagno, and P. Rigaud, "Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts," Solid State Ionics, vol. 11, no. 1, pp. 91-95, 1983.
[44] Z. Stoeva, I. Martin-Litas, E. Staunton, Y. G. Andreev, and P. G. Bruce, "Ionic conductivity in the crystalline polymer electrolytes PEO6: LiXF6, X= P, As, Sb," Journal of the American Chemical Society, vol. 125, no. 15, pp. 4619-4626, 2003.
[45] L. Long, S. Wang, M. Xiao, and Y. Meng, "Polymer electrolytes for lithium polymer batteries," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10038-10069, 2016.
[46] W. S. Young, W. F. Kuan, and T. H. Epps III, "Block copolymer electrolytes for rechargeable lithium batteries," Journal of Polymer Science Part B: Polymer Physics, vol. 52, no. 1, pp. 1-16, 2014.
[47] B. L. Rivas, A. Maureira, C. Guzmán, and M. A. Mondaca, "Poly (2‐acrylamido glycolic acid‐co‐2‐acrylamido‐2‐methyl‐1‐propane sulfonic acid): Synthesis, characterization, and retention properties for environmentally impacting metal ions," Journal of applied polymer science, vol. 111, no. 1, pp. 78-86, 2009.
[48] G. Mao, R. F. Perea, W. S. Howells, D. L. Price, and M.-L. Saboungi, "Relaxation in polymer electrolytes on the nanosecond timescale," Nature, vol. 405, no. 6783, p. 163, 2000.
[49] Z. Xue, D. He, and X. Xie, "Poly (ethylene oxide)-based electrolytes for lithium-ion batteries," Journal of Materials Chemistry A, vol. 3, no. 38, pp. 19218-19253, 2015.
[50] L. Carvalho, P. Guégan, H. Cheradame, and A. J. E. p. j. Gomes, "Variation of the mesh size of PEO-based networks filled with TFSILi: from an Arrhenius to WLF type conductivity behavior," vol. 36, no. 2, pp. 401-409, 2000.
[51] L. Othman, K. Chew, and Z. Osman, "Impedance spectroscopy studies of poly (methyl methacrylate)-lithium salts polymer electrolyte systems," Ionics, vol. 13, no. 5, pp. 337-342, 2007.
[52] M. Z. A. Munshi, Handbook of solid state batteries and capacitors. World Scientific, 1995.
[53] J. S. Kumar, A. Subrahmanyam, M. J. Reddy, and U. S. Rao, "Preparation and study of properties of polymer electrolyte system (PEO+ NaClO3)," Materials Letters, vol. 60, no. 28, pp. 3346-3349, 2006.
[54] R. Baskaran, S. Selvasekarapandian, N. Kuwata, J. Kawamura, and T. Hattori, "ac impedance, DSC and FT-IR investigations on (x) PVAc–(1− x) PVdF blends with LiClO4," Materials Chemistry Physics, vol. 98, no. 1, pp. 55-61, 2006.
[55] M. H. Cohen and D. Turnbull, "Molecular transport in liquids and glasses," The Journal of Chemical Physics, vol. 31, no. 5, pp. 1164-1169, 1959.
[56] T. Uma, T. Mahalingam, and U. Stimming, "Conductivity studies on poly (methyl methacrylate)–Li2SO4 polymer electrolyte systems," Materials chemistry physics, vol. 90, no. 2-3, pp. 245-249, 2005.
[57] S. B. Aziz, Z. Abidin, and A. K. Arof, "Effect of silver nanoparticles on the DC conductivity in chitosan–silver triflate polymer electrolyte," Physica B: Condensed Matter, vol. 405, no. 21, pp. 4429-4433, 2010.
[58] S. B. Aziz, T. J. Woo, M. Kadir, and H. M. Ahmed, "A conceptual review on polymer electrolytes and ion transport models," Journal of Science: Advanced Materials and Devices, vol. 3, no. 1, pp. 1-17, 2018.
[59] Y. Zhu, X. Wang, Y. Hou, X. Gao, L. Liu, Y. Wu, and M. Shimizu, "A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries," Electrochimica Acta, vol. 87, pp. 113-118, 2013.
[60] H. Lee, Z. Ma, X. Yang, X. Sun, and J. McBreen, "Synthesis of a series of fluorinated boronate compounds and their use as additives in lithium battery electrolytes," Journal of the Electrochemical Society, vol. 151, no. 9, pp. A1429-A1435, 2004.
[61] M. Marcinek, J. Syzdek, M. Marczewski, M. Piszcz, L. Niedzicki, M. Kalita, A. Plewa-Marczewska, A. Bitner, P. Wieczorek, and T. Trzeciak, "Electrolytes for Li-ion transport–review," Solid State Ionics, vol. 276, pp. 107-126, 2015.
[62] J. Zhou and P. S. Fedkiw, "Ionic conductivity of composite electrolytes based on oligo (ethylene oxide) and fumed oxides," Solid State Ionics, vol. 166, no. 3-4, pp. 275-293, 2004.
[63] S. Srivastava, J. L. Schaefer, Z. Yang, Z. Tu, and L. A. Archer, "25th anniversary article: polymer–particle composites: phase stability and applications in electrochemical energy storage," Advanced Materials, vol. 26, no. 2, pp. 201-234, 2014.
[64] P. C. Ray, "Size and shape dependent second order nonlinear optical properties of nanomaterials and their application in biological and chemical sensing," Chemical reviews, vol. 110, no. 9, pp. 5332-5365, 2010.
[65] Z.-Y. Zhou, N. Tian, J.-T. Li, I. Broadwell, and S.-G. Sun, "Nanomaterials of high surface energy with exceptional properties in catalysis and energy storage," Chemical Society Reviews, vol. 40, no. 7, pp. 4167-4185, 2011.
[66] C. D. Walkey, J. B. Olsen, H. Guo, A. Emili, and W. C. Chan, "Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake," Journal of the American Chemical Society, vol. 134, no. 4, pp. 2139-2147, 2012.
[67] P. Palmero, "Structural ceramic nanocomposites: a review of properties and powders’ synthesis methods," Nanomaterials, vol. 5, no. 2, pp. 656-696, 2015.
[68] J. Weston and B. Steele, "Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly (ethylene oxide) polymer electrolytes," Solid State Ionics, vol. 7, no. 1, pp. 75-79, 1982.
[69] W. Wieczorek, A. Zalewska, D. Raducha, Z. Florjańczyk, and J. R. Stevens, "Composite Polyether Electrolytes with Lewis Acid Type Additives," The Journal of Physical Chemistry B, vol. 102, no. 2, pp. 352-360, 1998/01/01 1998.
[70] B. Kumar and L. G. Scanlon, "Polymer-ceramic composite electrolytes," Journal of power sources, vol. 52, no. 2, pp. 261-268, 1994.
[71] Y. Liu, J. Lee, and L. Hong, "In situ preparation of poly (ethylene oxide)–SiO2 composite polymer electrolytes," Journal of Power Sources, vol. 129, no. 2, pp. 303-311, 2004.
[72] A. Zalewska, M. Walkowiak, L. Niedzicki, T. Jesionowski, and N. Langwald, "Study of the interfacial stability of PVdF/HFP gel electrolytes with sub-micro-and nano-sized surface-modified silicas," Electrochimica Acta, vol. 55, no. 4, pp. 1308-1313, 2010.
[73] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, and M. Hendrickson, "Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes," Electrochimica Acta, vol. 46, no. 16, pp. 2457-2461, 2001.
[74] Y.-J. Lim, Y.-H. An, and N.-J. Jo, "Polystyrene-Al2O3 composite solid polymer electrolyte for lithium secondary battery," Nanoscale research letters, vol. 7, no. 1, p. 19, 2012.
[75] W. Krawiec, L. Scanlon Jr, J. Fellner, R. Vaia, S. Vasudevan, and E. Giannelis, "Polymer nanocomposites: a new strategy for synthesizing solid electrolytes for rechargeable lithium batteries," Journal of Power Sources, vol. 54, no. 2, pp. 310-315, 1995.
[76] S. Chung, Y. Wang, L. Persi, F. Croce, S. Greenbaum, B. Scrosati, and E. Plichta, "Enhancement of ion transport in polymer electrolytes by addition of nanoscale inorganic oxides," Journal of power sources, vol. 97, pp. 644-648, 2001.
[77] H. Nithya, S. Selvasekarapandian, P. C. Selvin, D. A. Kumar, M. Hema, and D. Prakash, "Characterization of nanocomposite polymer electrolyte based on P (ECH-EO)," Physica B: Condensed Matter, vol. 406, no. 18, pp. 3367-3373, 2011.
[78] N. K. Sundaram, T. Vasudevan, and A. Subramania, "Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles," Journal of Physics Chemistry of Solids, vol. 68, no. 2, pp. 264-271, 2007.
[79] N. K. Sundaram and A. Subramania, "Microstructure of PVdF-co-HFP based electrolyte prepared by preferential polymer dissolution process," Journal of membrane science, vol. 289, no. 1-2, pp. 1-6, 2007.
[80] A. Dey, S. Karan, and S. De, "Effect of nanoadditives on ionic conductivity of solid polymer electrolyte," Journal of membrane science, vol. 51, pp. 281-228, 2013.
[81] S. Ibrahim, H. Ali, S. Aishah, and M. Nor Sabirin, "Characterization of PVDF-HFP-LiCF3SO3-ZrO2 Nanocomposite Polymer Electrolyte Systems," Advanced Materials Research, vol. 93-94, 2010.
[82] K. M. Kim, J. M. Ko, N.-G. Park, K. S. Ryu, and S. H. Chang, "Characterization of poly (vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled with rutile TiO2 nanoparticles," Solid State Ionics, vol. 161, no. 1-2, pp. 121-131, 2003.
[83] G. Li, Z. Li, P. Zhang, H. Zhang, and Y. Wu, "Research on a gel polymer electrolyte for Li-ion batteries," Pure Applied Chemistry, vol. 80, no. 11, pp. 2553-2563, 2008.
[84] Y.-J. Wang and D. Kim, "Crystallinity, morphology, mechanical properties and conductivity study of in situ formed PVdF/LiClO4/TiO2 nanocomposite polymer electrolytes," Electrochimica Acta, vol. 52, no. 9, pp. 3181-3189, 2007/02/15/ 2007.
[85] S. Panero, B. Scrosati, and S. Greenbaum, "Ionic conductivity and 7Li NMR study of poly (ethylene glycol) complexed with lithium salts," Electrochimica Acta, vol. 37, no. 9, pp. 1533-1539, 1992.
[86] M. C. Borghini, M. Mastragostino, S. Passerini, and B. Scrosati, "Electrochemical Properties of Polyethylene Oxide‐Li [(CF 3 SO 2) 2 N]‐Gamma‐LiAlO2 Composite Polymer Electrolytes," Journal of The Electrochemical Society, vol. 142, no. 7, pp. 2118-2121, 1995.
[87] 黃可龍, 王兆翔, and 劉素琴, 鋰離子電池原理與技術. 五南圖書 2010.
[88] C. W. Lin, C. L. Hung, M. Venkateswarlu, and B. J. Hwang, "Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries," Journal of Power Sources, vol. 146, no. 1, pp. 397-401, 2005/08/26/ 2005.
[89] C.-y. Pan, Q. Feng, L.-j. Wang, Q. Zhang, and M. Chao, "Morphology and conductivity of in-situ PEO-LiClO4-TiO2 composite polymer electrolyte," Journal of Central South University of Technology, journal article vol. 14, no. 3, pp. 348-352, June 01 2007.
[90] M. Osińska, M. Walkowiak, A. Zalewska, and T. Jesionowski, "Study of the role of ceramic filler in composite gel electrolytes based on microporous polymer membranes," Journal of Membrane Science, vol. 326, no. 2, pp. 582-588, 2009/01/20/ 2009.
[91] B. Kumar, "Heterogeneous electrolytes: Variables for and uncertainty in conductivity measurements," Journal of Power Sources, vol. 179, no. 1, pp. 401-406, 2008/04/15/ 2008.
[92] A. J. Bhattacharyya and J. Maier, "Second Phase Effects on the Conductivity of Non-Aqueous Salt Solutions: “Soggy Sand Electrolytes”," Advanced Materials, vol. 16, no. 9‐10, pp. 811-814, 2004.
[93] M. Walkowiak, A. Zalewska, T. Jesionowski, D. Waszak, and B. Czajka, "Effect of chemically modified silicas on the properties of hybrid gel electrolyte for Li-ion batteries," Journal of Power Sources, vol. 159, no. 1, pp. 449-453, 2006/09/13/ 2006.
[94] M. Walkowiak, A. Zalewska, T. Jesionowski, and M. Pokora, "Stability of poly(vinylidene fluoride-co-hexafluoropropylene)-based composite gel electrolytes with functionalized silicas," Journal of Power Sources, vol. 173, no. 2, pp. 721-728, 2007/11/15/ 2007.
[95] N.-S. Choi, Y. M. Lee, B. H. Lee, J. A. Lee, and J.-K. Park, "Nanocomposite single ion conductor based on organic–inorganic hybrid," Solid State Ionics, vol. 167, no. 3, pp. 293-299, 2004/02/27/ 2004.
[96] Y.-S. Lee, J. H. Lee, J.-A. Choi, W. Y. Yoon, and D.-W. Kim, "Cycling Characteristics of Lithium Powder Polymer Batteries Assembled with Composite Gel Polymer Electrolytes and Lithium Powder Anode," Advanced Functional Materials, vol. 23, no. 8, pp. 1019-1027, 2013.
[97] S.-M. Park, Y.-S. Lee, and D.-W. Kim, "High-Performance Lithium-Ion Polymer Cells Assembled with Composite Polymer Electrolytes based on Core-Shell Structured SiO2 Particles Containing Poly(lithium acrylate) in the Shell," Journal of The Electrochemical Society, vol. 162, no. 2, pp. A3071-A3076, January 1, 2015 2015.
[98] P. Yang, P. Zhang, C. Shi, L. Chen, J. Dai, and J. Zhao, "The functional separator coated with core–shell structured silica–poly(methyl methacrylate) sub-microspheres for lithium-ion batteries," Journal of Membrane Science, vol. 474, pp. 148-155, 2015/01/15/ 2015.
[99] W.-K. Shin, J. Cho, A. G. Kannan, Y.-S. Lee, and D.-W. Kim, "Cross-linked Composite Gel Polymer Electrolyte using Mesoporous Methacrylate-Functionalized SiO2 Nanoparticles for Lithium-Ion Polymer Batteries," Scientific Reports, Article vol. 6, p. 26332, 05/18/online 2016.
[100] J. Cao, L. Wang, X. He, M. Fang, J. Gao, J. Li, L. Deng, H. Chen, G. Tian, J. Wang, and S. Fan, "In situ prepared nano-crystalline TiO2–poly(methyl methacrylate) hybrid enhanced composite polymer electrolyte for Li-ion batteries," Journal of Materials Chemistry A, 10.1039/C3TA00086A vol. 1, no. 19, pp. 5955-5961, 2013.
[101] J. Cao, L. Wang, Y. Shang, M. Fang, L. Deng, J. Gao, J. Li, H. Chen, and X. He, "Dispersibility of nano-TiO2 on performance of composite polymer electrolytes for Li-ion batteries," Electrochimica Acta, vol. 111, pp. 674-679, 2013/11/30/ 2013.
[102] P. A. R. D. Jayathilaka, M. A. K. L. Dissanayake, I. Albinsson, and B. E. Mellander, "Effect of nano-porous Al2O3 on thermal, dielectric and transport properties of the (PEO)9LiTFSI polymer electrolyte system," Electrochimica Acta, vol. 47, no. 20, pp. 3257-3268, 2002/08/05/ 2002.
[103] Y.-S. Ye, J. Rick, and B.-J. Hwang, "Ionic liquid polymer electrolytes," Journal of Materials Chemistry A, 10.1039/C2TA00126H vol. 1, no. 8, pp. 2719-2743, 2013.
[104] K. J. Fraser, E. I. Izgorodina, M. Forsyth, J. L. Scott, and D. R. MacFarlane, "Liquids intermediate between “molecular” and “ionic” liquids: Liquid Ion Pairs?," Chemical Communications, 10.1039/B710014K no. 37, pp. 3817-3819, 2007.
[105] D. R. MacFarlane, M. Forsyth, E. I. Izgorodina, A. P. Abbott, G. Annat, and K. Fraser, "On the concept of ionicity in ionic liquids," Physical Chemistry Chemical Physics, 10.1039/B900201D vol. 11, no. 25, pp. 4962-4967, 2009.
[106] M. Kerner, N. Plylahan, J. Scheers, and P. Johansson, "Ionic liquid based lithium battery electrolytes: fundamental benefits of utilising both TFSI and FSI anions?," Physical Chemistry Chemical Physics, 10.1039/C5CP01891A vol. 17, no. 29, pp. 19569-19581, 2015.
[107] P. Snedden, A. I. Cooper, K. Scott, and N. Winterton, "Cross-Linked Polymer−Ionic Liquid Composite Materials," Macromolecules, vol. 36, no. 12, pp. 4549-4556, 2003/06/01 2003.
[108] M. A. B. H. Susan, T. Kaneko, A. Noda, and M. Watanabe, "Ion Gels Prepared by in Situ Radical Polymerization of Vinyl Monomers in an Ionic Liquid and Their Characterization as Polymer Electrolytes," Journal of the American Chemical Society, vol. 127, no. 13, pp. 4976-4983, 2005/04/01 2005.
[109] M. A. Klingshirn, S. K. Spear, R. Subramanian, J. D. Holbrey, J. G. Huddleston, and R. D. Rogers, "Gelation of Ionic Liquids Using a Cross-Linked Poly(Ethylene Glycol) Gel Matrix," Chemistry of Materials, vol. 16, no. 16, pp. 3091-3097, 2004/08/01 2004.
[110] Shalu, V. K. Singh, and R. K. Singh, "Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties," Journal of Materials Chemistry C, 10.1039/C5TC00940E vol. 3, no. 28, pp. 7305-7318, 2015.
[111] H. Ohno, "Design of Ion Conductive Polymers Based on Ionic Liquids," Macromolecular Symposia, vol. 249-250, no. 1, pp. 551-556, 2007.
[112] M. D. Green and T. E. Long, "Designing Imidazole-Based Ionic Liquids and Ionic Liquid Monomers for Emerging Technologies," Polymer Reviews, vol. 49, no. 4, pp. 291-314, 2009/10/30 2009.
[113] A. S. Shaplov, R. Marcilla, and D. Mecerreyes, "Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s," Electrochimica Acta, vol. 175, pp. 18-34, 2015/09/01/ 2015.
[114] G. Arrachart, I. Karatchevtseva, A. Heinemann, D. J. Cassidy, and G. Triani, "Synthesis and characterisation of nanocomposite materials prepared by dispersion of functional TiO2 nanoparticles in PMMA matrix," Journal of Materials Chemistry, 10.1039/C1JM11964H vol. 21, no. 34, pp. 13040-13046, 2011.
指導教授 諸柏仁 審核日期 2019-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明