參考文獻 |
[1] https://www.materialsnet.com.tw/DocView.aspx?id=35388 (2018年9月5日)
[2] https://www.nrel.gov/pv/assets/pdfs/best-research-cell-efficiencies.20190802.pdf, August 2nd, 2019.
[3] http://en.wikipedia.org/wiki/Gustav_Rose (2017年8月11日)
[4] W. Q. Wu, Z. Yang, P. N. Rudd, Y. Shao, X. Dai, H. Wei, J. Zhao, Y. Fang, Q. Wang, Y. Liu, Y. Deng, X. Xiao, Y. Feng, J. Huang “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv., 2019, 5, 8925-8933.
[5] J. Zhao, X. Zheng, Y. Deng, T. Li, Y. Shao, A. Gruverman, J. Shield J. Huang “Is Cu a stable electrode material in hybrid perovskite solar cells for a 30-year lifetime?”, Energy Environ. Sci., 2016, 9, 3650-3656.
[6] D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent, O. M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519-522.
[7] W. Q. Wu, D. Chen, R. A. Caruso, Y. B. Cheng “Recent progress in hybrid perovskite solar cells based on n-type materials”, J. Mater. Chem. A, 2017, 5, 10092-10109.
[8] Y. Lin, L. Shen, J. Dai, Y. Deng, Y. Wu, Y. Bai, X. Zheng, J. Wang, Y. Fang, H. Wei, W. Ma, X. C. Zeng, X. Zhan, J. Huang “π-Conjugated lewis base: efficient trap-passivation and charge-extraction for hybrid perovskite solar cells”, Adv. Mater., 2017, 1604545-1604550.
[9] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells”, Nature Communications, 2013, 2885-2892
[10] F. Wu, W. Gao, H. Yu, L. Zhu, L. Li, C. Yang “Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4443-4448.
[11] Y. He, Y. Li “Fullerene derivative acceptors for high performance polymer solar cells”, Phys. Chem. Chem. Phys., 2011, 13, 1970-1983
[12] F. Wu, W. Gao, H. Yu, L. Zhu, L. Li, C. Yang “Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4443-4448.
[13] Z. Zhu, J. Q. Xu, C. C. Chueh, H. Liu, Z. Li, X. Li, H. Chen, A. K.Y. Jen “A low-temperature, solution-processable organic electron-transporting layer based on planar coronene for high-performance conventional perovskite solar cells“ , Adv. Mater., 2016, 10786-10793.
[14] C. Wang, J. Wang, P. Z. Li, J. Gao, S. Y. Tan, W. W. Xiong, B. Hu, P. S. Lee, Y. Zhao, Q. Zhang, “Synthesis, characterization, and non-volatile memory device application of an N-substituted heteroacene”, Chem Asian J, 2014, 9, 779-783.
[15] C. Wang, P. Gu, B.Hu, Q. Zhang, “Recent progress in organic resistance memory with small molecules and inorganic–organic hybrid polymers as active elements”, J. Mater. Chem. C, 2015, 3, 10055-10065.
[16] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells”, J. Am. Chem. Soc., 2009, 131, 6050-6051
[17] P. Y. Gu, N. Wang, C. Wang, Y. Zhou, G. Long, M. Tian, W. Chen, X. W. Sun, M. G. Kanatzidis, Q. Zhang, , ”Pushing up the efficiency of planar perovskite solar cells to 18.2% with organic small molecules as the electron transport layer”, J. Mater. Chem. A, 2017, 5, 7339-7344.
[18] K. Wen, X. Pan, S. Feng, W. Wu, X. Guo, J. Zhang “Improving the electron transport performance by changing side chains in sulfur-containing azaacenes: a combined theoretical investigation on free molecules and an adsorption system”, New J. Chem., 2019, 43, 5414-5422.
[19] F. Wu, W. Gao, H. Yu, L. Zhu, L. Li, C. Yang “Efficient small-molecule non-fullerene electron transporting materials for high-performance inverted perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 4443-4448.
[20] W. Gao, Q. An, R. Ming, D. Xie, K. Wu, Z. Luo, Y. Zou, F. Zhang, C. Yang, “Side Group Engineering of Small Molecular Acceptors for High‐Performance Fullerene‐Free Polymer Solar Cells: Thiophene Being Superior to Selenophene” Adv. Funct. Mater., 2017, 27, 1702194-1702203.
[21] J. L. Segura, R. Jua´rez, M.Ramos, C. Seoane “Hexaazatriphenylene (HAT) derivatives: from synthesis to molecular design, self-organization and device applications”, Chem. Soc. Rev., 2015, 44, 6850-6885.
[22] F. Selzer, C. Falkenberg, M. Hamburger, M. Baumgarten, K. Müllen, K. Leo, M. Riede, “Improved organic p-i-n type solar cells with n-doped fluorinated hexaazatrinaphthylene derivatives HATNA-F6 and HATNA-F12 as transparent electron transport material”, J. Appl. Phys., 2014, 115, 054515-054520.
[23] D. B. Zhao, Z. L. Zhu, M. Y. Kuo, C. C. Chueh, A. K. Y. Jen. “Hexaazatrinaphthylene derivatives: efficient electron-transporting materials with tunable energy levels for inverted perovskite solar cells”, Angew. Chem. Int. Ed., 2016, 55, 8999-9003.
[24] N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely, H. J. Snaith “Enhanced photoluminescence and solar cell performance via lewis base passivation of organic-inorganic lead halide perovskites”, ACS Nano, 2014, 8, 9815-9821.
[25] N. Wang, K. Zhao, T. Ding, W. Liu, A. S. Ahmed, Z. Wang, M. Tian, X. W. Sun, Q. Zhang “Improving interfacial charge recombination in planar heterojunction perovskite photovoltaics with small molecule as electron transport layer”, Adv. Energy Mater., 2017, 1700522-1700529.
[26] B. L. Hayes “Recent Advances in Microwave Assisted Synthesis.” Aldricchem. Aceta., 2004, 17, 65-76.
[27] 魏伸紘,「以電化學法檢測人類乳突病毒序列之研究」,國立交通大學,碩士論文,2004。
[28] http://www.ceb.cam.ac.uk/research/groups/rg-eme/teaching-notes/linear-sweep-and-cyclic-voltametry-the-principles, August 13th, 2017.
[29] V. V. Pavlishchuk, A. W. Addison, “Conversion constants for redox potentials measured versus different reference electrodes in acetonitrile solutions at 25°C”, Inorganica Chim. Acta, 2000, 298, 97-102.
[30] J. Shao, X. Guo, N. Shi, X. Zhang, S. Liu, Z. Lin, B. Zhao,J. Chang, J. Shao, X. Dong ”Acenaphthylene-imide based small molecules/TiO2 bilayer as electron-transporting layer for solution-processing efficient perovskite solar cells”, Sci. China Mater., 2019, 62, 497-507. |