博碩士論文 106626002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:75 、訪客IP:3.94.99.173
姓名 莊淑君(Shu-Chun Chuang)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 極端風暴潮之情境分析與 海平面上升對溢淹範圍之影響
相關論文
★ 雙向流固耦合移動邊界法發展及其於山崩海嘯之研究★ 三維真實地形數值模擬之海嘯上溯研究
★ 發展風暴潮影響強度分析法以重建1845雲林口湖風暴朝事件★ 發展適用於印度洋之氣旋風暴潮預報模式
★ 2006年屏東外海地震引發海嘯的數值模擬探討★ 馬尼拉海溝地震引發海嘯的潛勢分析
★ 三維海嘯湧潮對近岸結構物之影響★ 海嘯逆推方法之研發及其於2006 年屏東地震之應用
★ 以三維賓漢流數值模式模擬海嘯沖刷坑之發展★ 以三維數值模擬探討海嘯湧潮與結構物之交互作用
★ 三維雙黏性流模式於高濃度泥沙流及泥沙底床沖刷之發展及應用★ 海岸樹林及消波結構物對海嘯能量消散之模擬
★ 重建台灣九棚海嘯石之古海嘯事件及孤立波與水下圓板交互作用之模擬★ 裙礁流場之數值分析與消能特性之探討
★ 風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究★ 台灣海嘯速算系統建置暨1867年 基隆海嘯事件之還原與分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氣候變遷之全球暖化導致海平面上升,未來潛在強烈颱風生成機率與強度亦有增加之趨勢,而颱風所引起之風暴潮威脅亦將隨之改變。本研究使用COMCOT風暴潮模式 (COrnel Multi-Grid COupled Tsunami Model – Storm Surge, COMCOT-SS) 計算潛在強烈颱風於海平面上升情境所造成之風暴潮威脅,以及臺灣沿海地區之風暴潮分布與潛勢溢淹範圍。COMCOT-SS模式可計算大尺度遠洋區域,以涵蓋風暴潮傳遞完整週期,同時兼顧近岸尺度之溢淹溯上模擬,並結合TPXO全球天文潮模式作為潮汐邊界,以及可導入中央氣象局發展之TWRF 2.0氣象場與參數化理想風場。
本研究針對中央氣象局定義之第2、3、4、5、6、7、8和9類颱風侵臺路徑,並根據歷史颱風路徑建立強烈颱風案例,模擬不同颱風路徑於海水位抬升10、20、30、40、50及60公分等情境之風暴潮變化。於沿海地區導入高解析度近岸地形,分析海平面上升對臺灣沿岸之風暴潮潮高及其溢淹影響。模擬結果顯示,若颱風只行經台灣東方海域且未登陸台灣本島,則台灣沿岸並無明顯溢淹;而在地勢較低之西部沿海區域,於各海平面情境之潛勢溢淹較為明顯,潛勢溢淹範圍與海水位抬升呈現非線性增長,此外,若颱風為由東向西侵襲台灣,西南部沿岸之潛勢溢淹範圍則隨著海平面上升而逐漸減少。
摘要(英) The global warming of climate change has led to issues of sea-level rising and more frequent typhoons with higher intensity than before. The impacts of this trend may enhance the hazard from storm surge and putting a growing number of people and structures at risk.
In this study, the COMCOT-SS model (COrnel Multi-Grid COupled Tsunami Model – Storm Surge) is used to not only evaluate the threats of storm surges caused by potentially strong typhoons under the impact of climate change but also estimate the potential inundation distribution of Taiwan coastal region. The COMCOT-SS model is capable of fully covering the entire lifespan of a storm surge transmission, from the large-scale oceanic areas to nearshore inundation. It solves non-linear shallow water equations in hydrodynamics with TPXO Global Tidal Solutions as the tidal boundary driver and parametric wind model is applied in this research.
The study is aimed at evaluating the potential inundating area when sea level rises by building scenarios of intense typhoons threatening Taiwan coastal regions under various sea-level condition, of which their path from historical records varied from different categories provided by Central Weather Bureau, Taiwan.
The simulation results indicate that if the typhoon track passes through the eastern seas of Taiwan and didn′t make landfall, then there’s no significant inundation along the coastal region. On the other hand, the low-lying area on the western coast of Taiwan has more chance to get inundated under all sea-level conditions, yet the relationship between the increasing of inundation area and the sea-level rise is not linear. In addition, if the typhoon track hits Taiwan from east to west, the potential inundation area along the southwestern coast gradually decreases as the sea level rises.
關鍵字(中) ★ 風暴潮模式
★ 海平面上升
★ 極端風暴潮
★ 潛勢溢淹計算
關鍵字(英) ★ COMCOT
★ storm surge model
★ sea-level rise
★ extreme storm surge
★ potential inundation evaluation
論文目次 摘要 v
Abstract vi
誌謝 vii
目錄 viii
圖目錄 x
表目錄 xiv
第 1 章、 緒論 1
1.1. 研究背景與動機 1
1.2. 文獻回顧 2
1.2.1. 國內風暴潮研究 2
1.2.2. 國際風暴潮研究 3
1.2.3. 海平面上升 5
1.3. 研究方法 8
第 2 章、 數值模式 9
2.1. COMCOT-SS模式介紹 9
2.2. 巢狀網格設置 10
2.3. 數值潮位計設置 13
第 3 章、 情境設置 15
3.1. 海平面情境 15
3.2. 颱風路徑 28
第 4 章、 強烈颱風案例分析 34
4.1. 颱風案例TyPC02 35
4.2. 颱風案例之東西走向路徑 44
4.3. 颱風案例之南北走向路徑 46
第 5 章、 潛勢溢淹範圍 48
5.1. 颱風路徑案例之潛勢溢淹範圍 49
5.2. 台灣沿海區域之潛勢溢淹範圍 98
第 6 章、 颱風案例TyPC02於海平面上升200公分之情境分析 107
第 7 章、 結論 114
第 8 章、 參考文獻 116
附錄A、 論文口試書面答覆表 120
附錄B、 COMCOT暴潮模式之統御方程式 122
附錄C、 颱風大氣模式 127
附錄D、 強烈颱風案例之風暴潮二維分布圖 129
附錄E、 風場參數測試 189
參考文獻 1. Blumberg, Alan F, and Mellor, George L, 1987, “A description of a three‐dimensional coastal ocean circulation model”. Three‐dimensional coastal ocean models, 1-16.
2. Booij, N, Holthuijsen, LH, and Ris, RC, 1996, “The" SWAN" wave model for shallow water”. Coastal Engineering Proceedings, 1(25).
3. Chen, Nan, Han, Guoqi, and Yang, Jingsong, 2018, “Mean relative sea level rise along the coasts of the China Seas from mid-20th to 21st centuries”. Continental Shelf Research, 152, 27-34.
4. Cheng, Xuhua, and Qi, Yiquan, 2007, “Trends of sea level variations in the South China Sea from merged altimetry data”. Global and Planetary Change, 57(3-4), 371-382.
5. Cheng, Yongcun, and Andersen, Ole Baltazar, 2013, “Impacts of altimeter corrections on local linear sea level trends around Taiwan”. International journal of remote sensing, 34(19), 6738-6748.
6. Cheung, KF, Phadke, AC, Wei, Y, Rojas, R, Douyere, YJ-M, Martino, CD, Houston, SH, Liu, PL-F, Lynett, PJ, and Dodd, N, 2003, “Modeling of storm-induced coastal flooding for emergency management”. Ocean Engineering, 30(11), 1353-1386.
7. Church, John A, and White, Neil J, 2011, “Sea-level rise from the late 19th to the early 21st century”. Surveys in geophysics, 32(4-5), 585-602.
8. Dean, Robert G, and Dalrymple, Robert A, “Water wave mechanics for engineers and scientists” (Vol. 2): World Scientific Publishing Company, 1991.
9. Dietrich, JC, Zijlema, M, Westerink, JJ, Holthuijsen, LH, Dawson, C, Luettich Jr, RA, Jensen, RE, Smith, JM, Stelling, GS, and Stone, GW, 2011, “Modeling hurricane waves and storm surge using integrally-coupled, scalable computations”. Coastal Engineering Journal, 58(1), 45-65.
10. Doong, Dong-Jiing, Hsu, Tai-Wen, Wu, Li-Chung, and Kao, Chia Chuen. (2009). Sea level rise at East Asia coasts based on tide gauge analysis. Paper presented at the The Nineteenth International Offshore and Polar Engineering Conference.
11. Egbert, Gary D, and Erofeeva, Svetlana, 2002, “Efficient inverse modeling of barotropic ocean tides”. Journal of Atmospheric and Oceanic Technology, 19(2), 183-204.
12. Forbes, Cristina, Rhome, Jamie, Mattocks, Craig, and Taylor, Arthur, 2014, “Predicting the storm surge threat of Hurricane Sandy with the National Weather Service SLOSH model”. Journal of Marine Science and Engineering, 2(2), 437-476.
13. Hsiao, Ling-Feng, Chen, Der-Song, Kuo, Ying-Hwa, Guo, Yong-Run, Yeh, Tien-Chiang, Hong, Jing-Shan, Fong, Chin-Tzu, and Lee, Cheng-Shang, 2012, “Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches”. Weather and Forecasting, 27(5), 1249-1263.
14. Jakobsen, Fl, Azam, MH, and Mahboob-Ul-Kabir, M, 2002, “Residual flow in the Meghna Estuary on the coastline of Bangladesh”. Estuarine, Coastal and Shelf Science, 55(4), 587-597.
15. Jelesnianski, Chester P, Chen, Jye, and Shaffer, Wilson A, 1992, “SLOSH: Sea, lake, and overland surges from hurricanes”.
16. Kim, Soo Youl, Yasuda, Tomohiro, and Mase, Hajime, 2008, “Numerical analysis of effects of tidal variations on storm surges and waves”. Applied Ocean Research, 30(4), 311-322.
17. Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., and Janssen, P. A. E. M., “Dynamics and modelling of ocean waves”: Cambridge, UK: Cambridge University Press, 1996.
18. Lin, Yu-Hsien, Fang, Ming-Chung, and Hwung, Hwung-Hweng, 2010, “Transport reversal due to Typhoon Krosa in the Taiwan Strait”. Open Ocean Engineering Journal, 3, 143-157.
19. Luettich Jr, Richard A, Westerink, Joannes J, and Scheffner, Norman W. 1992, “ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL”,
20. Lynett, Patrick J, Wu, Tso-Ren, and Liu, Philip L-F, 2002, “Modeling wave runup with depth-integrated equations”. Coastal engineering, 46(2), 89-107.
21. Madsen, Henrik, and Jakobsen, Flemming, 2004, “Cyclone induced storm surge and flood forecasting in the northern Bay of Bengal”. Coastal engineering, 51(4), 277-296.
22. Mastenbroek, C, Burgers, G, and Janssen, PAEM, 1993, “The dynamical coupling of a wave model and a storm surge model through the atmospheric boundary layer”. Journal of physical Oceanography, 23(8), 1856-1866.
23. Merrifield, Mark A, 2011, “A shift in western tropical Pacific sea level trends during the 1990s”. Journal of Climate, 24(15), 4126-4138.
24. Mori, Nobuhito, Shimura, Tomoya, Yoshida, Kohei, Mizuta, Ryo, Okada, Yasuko, Fujita, Mikiko, Khujanazarov, Temur, and Nakakita, Eiichi, 2019, “Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model”. Coastal Engineering Journal, 1-13.
25. Sheng, Y Peter. 1987. On modeling three-dimensional estuarine and marine hydrodynamics Elsevier oceanography series (Vol. 45, pp. 35-54): Elsevier.
26. Sheng, Y Peter, Zhang, Yanfeng, and Paramygin, Vladimir A, 2010, “Simulation of storm surge, wave, and coastal inundation in the Northeastern Gulf of Mexico region during Hurricane Ivan in 2004”. Ocean Modelling, 35(4), 314-331.
27. Skamarock, William C., Klemp, Joseph B., Dudhia, Jimy, Gill, David O., Barker, Dale M., Duda, Michael G., Huang, Xiang-Yu, Wang, Wei, and Powers, Jordan G., 2008, “A description of the advanced research WRF version 3”,
28. Stammer, Detlef, Cazenave, Anny, Ponte, Rui M, and Tamisiea, Mark E, 2013, “Causes for contemporary regional sea level changes”. Annual review of marine science, 5, 21-46.
29. Stocker, Thomas F, Qin, Dahe, Plattner, Gian-Kasper, Tignor, Melinda, Allen, Simon K, Boschung, Judith, Nauels, Alexander, Xia, Yu, Bex, Vincent, and Midgley, Pauline M. 2013, “Climate change 2013: The physical science basis”,
30. Tseng, Yu-Heng, Breaker, Larry C, and Chang, Emmy T-Y, 2010, “Sea level variations in the regional seas around Taiwan”. Journal of oceanography, 66(1), 27-39.
31. Wang, Xiaoming, 2009, “User manual for COMCOT version 1.7 (first draft)”.
32. Zhang, Wen-Zhou, Hong, Hua-Sheng, Shang, Shao-Ping, Chen, De-Wen, and Chai, Fei, 2007, “A two-way nested coupled tide-surge model for the Taiwan Strait”. Continental Shelf Research, 27(10-11), 1548-1567.
33. 于嘉順, 尤皓正, 陳琬婷, 朱啟豪, and 滕春慈,2012,「應用 WRF 風場發展之台灣海域風暴潮作業化模式」,第 34屆海洋工程研討會論文集
34. 于嘉順, 江朕榮, 尤皓正, and 余杏儒,2007,「中央氣象局多尺度暴潮模式預報作業改進及長期暴潮水位模擬分析研究(3/3)」。:交通部中央氣象局。
35. 中央氣象局,2019,「2019年潮汐表」,交通部中央氣象局。
36. 王茂興,2007,「暴潮引致海岸地表淹水之模擬分析」,第29屆海洋工程研討會論文集
37. 李汴軍, 鄭皓元, 范揚洺, and 高家俊,2006,「區域化颱風波浪現報模式之研究(I)-SWAN 波浪模式推算週期之探討」,第28屆海洋工程研討會論文集
38. 林媺瑛, 邱銘達, 柳文成, 陳致穎, and 鄭皓元,2016,「颱風暴潮預報之不確定性分析」,臺灣水利, 64卷3期。
39. 邱銘達,2010,「台灣海域天文潮與颱風暴潮之特性與模擬」,國立成功大學水利及海洋工程研究所,博士論文。
40. 邱銘達, 高家俊, 馮智源, and 江俊儒,2006,「颱風暴潮數值推算確度提升之研究」,第28屆海洋工程研討會論文集
41. 財團法人成大研究發展基金會,2010,「運用潮位與衛星資料推估海平面變遷量技術之研發(2/2)」。:經濟部水利署。
42. 高家俊,2005,「資料同化應用於颱風暴潮數值預報之研究(3/3)」。:行政院國家科學委員會。
43. 郭重言, 林立青, 藍文浩, 莊文傑, and 李俊穎,2015,「臺灣四周海域長期性之海水面變化趨勢評估」。:交通部運輸研究所。
44. 陳偉柏, 柳文成, 許銘熙, and 于宜強,2010,「台灣海峽暴潮位數值模擬之研究」,第32屆海洋工程研討會論文集
45. 黃偉柏, 柳景仲, and 龔誠山,2010,「台灣西南海岸暴潮之研究」,第32屆海洋工程研討會論文集
46. 黃偉柏, 許長安, 龔誠山, and 林杰熙,2006,「台灣北部海岸暴潮之研究」,第28屆海洋工程研討會論文集
47. 黃榮鑑, and 姚家琪,1995,「颱風暴潮三維數值模式研究」,第 17 屆海洋工程研討會暨1995兩岸港口及海岸開發研討會論文集
48. 蔡育霖,2014,「風暴潮速算系統之建立及1845年雲林口湖事件之還原與研究」,國立中央大學水文與海洋科學研究所,碩士論文。
49. 蔡育霖, 吳祚任, 滕春慈, 朱啟豪, 葉天降, 莊美惠, and 林君蔚,2017,「臺灣極端暴潮案例模擬與潛在威脅性分析」,106年天氣分析與預報研討會
50. 環興科技股份有限公司,2016,「氣候變遷對水環境之衝擊與調適研究第3階段管理計畫(3/5)」。:經濟部水利署。
指導教授 吳祚任(Tso-Ren Wu) 審核日期 2019-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明