博碩士論文 106821001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:100 、訪客IP:18.222.117.136
姓名 蔡孟儒(Meng-Ju Tsai)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 硫磺礦硫化葉菌程序性細胞死亡蛋白5晶體結構分析及其與DNA的相互作用
(Crystal Structure Analysis of Sulfolobus solfataricus Programmed Cell Death Protein 5 and Its Interaction with DNA)
相關論文
★ 硫化屬古生菌中的酮醇酸還原異構酶結構分析★ 古生菌嗜酸熱硫化葉菌的乙醯乳酸還原異構酶的晶體結構以及穩定性
★ 硫化葉菌屬中耐熱酮醇酸還原異構酶之結構性及功能性分析★ 嗜酸熱硫化葉菌的DNA結合蛋白Saci_0101之結構與功能分析
★ PDCD5蛋白在Sulfolobus solfataricus 古生菌的結構與功能分析★ 嗜酸熱硫化葉菌中去氧核醣核酸結合蛋白Saci_1212之結構性及功能性分析
★ 嗜酸熱硫化葉菌中DNA結合蛋白Sac10b之結構分析及其與DNA相互作用★ 嗜酸熱硫化葉菌酮醇酸還原異構酶與輔酶共晶體結構及活性分析
★ 脂肪酸特異互養棲熱菌酮醇酸還原異構酶之晶體結構及活性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 中文摘要
程序性細胞死亡蛋白5 (PDCD5)在真核生物的細胞凋亡途徑中扮演著重要信號蛋白的角色,在現有的研究中,已知人類PDCD5蛋白中存在著三螺旋束和兩個游離的氮端區域,然而對於古生菌中PDCD5的研究仍尚不清楚。本研究中,我們鑑定了來自硫磺礦硫化葉菌的PDCD5同源蛋白(Sso-PDCD5),並且以1.55Å的高解析度呈現Sso-PDCD5的晶體結構,Sso-PDCD5為PDCD5同源蛋白中第一個解析出來的晶體結構,此蛋白質具有低柔韌性的緊密核心,氮端區域具有四個α-螺旋,以及具有彈性的碳端尾端。而位於碳端區域的色胺酸(W117)在激發螢光的實驗中發現色胺酸(W117)發散出的螢光可以被20bp的雙股DNA給遮蔽,螢光強度隨DNA濃度的增加而減少,這顯示Sso-PDCD5可以透過碳端尾端與DNA進行相互作用。在等溫滴定量熱的結果顯示碳端截斷蛋白(Sso-PDCD5_CTT,刪除K108-K118序列)顯著降低了與DNA結合的親和力,更進一步證明Sso-PDCD5利用動態的碳端尾端與雙股DNA進行結合。除此之外,電子顯微鏡(EM)的圖像顯示,Sso-PDCD5透過橋接的方式與雙股DNA相互作用結合。總而言之,經過結構以及生化方面的實驗數據表明Sso-PDCD5具有與雙股DNA結合的能力,是一種DNA結合蛋白。

關鍵字:硫磺礦硫化葉菌、程序性細胞死亡蛋白5、X光繞射、蛋白質結晶學、DNA結合蛋白
摘要(英) Abstract
The Programmed Cell Death protein 5 (PDCD5) is an important signal protein of apoptosis pathway in eukaryotes. In previous research, it is known there are triple-helix bundle and two dissociated N-terminal regions in human PDCD5 protein. However, the study of PDCD5 in hyperthermophile archaea remains unclear. Here, we identify a PDCD5 homolog from Sulfolobus solfataricus (Sso_PDCD5) and present the crystal structure of Sso_PDCD5 at a high resolution of 1.55 Å. This is the first crystal structure of a PDCD5 homolog to be solved, showing that the protein has a compact core of low flexibility with four alpha-helices at N-terminal region and a flexible unstructured C-terminal tail. The fluorescence of C-terminal tryptophan (W117) can be quenched by 20 bp double-strand DNA which indicates PDCD5 may interact with DNA by the C-terminal tail. The isothermal titration calorimety (ITC) results show C-terminal truncated protein (PDCD5_CTT, detection of K108-K118) significantly reduced the DNA-binding affinity, further demonstrated that the flexible C-terminus of Sso_PDCD5 involved in binding dsDNA. In addition, Sso_PDCD5 binds dsDNA through bridging interactions as shown in electron microscopy (EM) images. In conclusion, the structural and biochemical data suggest that Sso_PDCD5 may function as a DNA-binding protein.


Keywords: Sulfolobus solfataricus, the programmed cell death protein 5, crystal structure, X-ray crystallography, DNA-binding protein
關鍵字(中) ★ 硫磺礦硫化葉菌
★ 程序性細胞死亡蛋白5
★ X光繞射
★ 蛋白質結晶學
★ DNA結合蛋白
關鍵字(英) ★ Sulfolobus solfataricus
★ the programmed cell death protein 5
★ crystal structure
★ X-ray crystallography
★ DNA-binding protein
論文目次 目錄
中文摘要……………………………………………………………….……..………………..Ⅰ
英文摘要………………………………………………………………...…………….............Ⅱ
致謝………………………………………………………………………..………………….Ⅲ
目錄…………………………………………………………………………..…………...….Ⅳ
圖目錄….………………………………………………………………………...................Ⅷ
表目錄………………………………………………………………………………………....Ⅹ


第一章 緒論………………………………………………………………………...…1
1.1人類Programmed Cell Death protein 5(Human PDCD5)…………………………………1
1.2程序性細胞死亡(Programmed Cell Death)與細胞凋亡(Apoptosis)……………….……..3
1.3硫磺礦硫化葉菌…………………………………………………………………………...5
1.4古生菌 PDCD5 (Archaea PDCD5)………………………...……………………………...5
1.5蛋白質結晶學………………………………………..…………………………………….7
1.5.1結構生物學…………………………………………………………………………7
1.5.2 X光結晶學(X-ray crystallography)………………………………………………..7
1.5.3蛋白質晶體…………………………………………………………………………7
1.5.4布拉格定律(Bragg’s law)…………………………………………………………..9
1.5.5蛋白質晶體繞射原理………………………………………………………………9
1.5.6相位角決定方法…………………………………………………..……….……...10
1.5.6.1同型置換法(isomorphous replacement method)……………………..……10
1.5.6.2分子置換法(molecular replacement)………………………………..……..10
1.5.6.3非尋常散射法(anomalous dispersion method)…………….…………...….10
1.6研究動機與目的…………………………………………...……………………………..10
第二章 研究材料與方法……………………………………………………….……12
2.1 實驗架構設計…………………………………………………………………………....12
2.2 於載體(pET-21a)建構目標基因(Sso_PDCD5)序列……………………………………12
2.2.1 於硫磺礦硫化葉菌萃取目標基因(Sso_PDCD5)序列…………………………..12
2.3於載體( pET-21a )建構目標基因Sso-PDCD5_CTT基因序列…………………………13
2.3.1硫化葉菌Sso-PDCD5基因體…………………………………………………….13
2.3.2聚合酶連鎖反應引子PCR Primer設計………………………………………….13
2.3.3確認Sso-PDCD5基因序列於E.coli (DH5α)菌株中的正確性………………….15
2.3.4聚合酶鏈鎖反應(Polymerase Chain Reaction) Sso-PDCD5_CTT……………….15
2.3.5剪切反應實驗(Digestion)…………………………………………………………17
2.3.6目標基因(Sso-PDCD5_CTT)與載體(pET-21a)黏合反應(Ligation)…..…….….. 17
2.3.7製備勝任細胞 (Competent Cell)…………………………………………………18
2.3.8轉化作用(Transformation)…………..…………………………………….………18
2.3.9菌落聚合酶鏈鎖反應(Colony PCR)……………………………………….……..19
2.3.10瓊脂糖凝膠電泳反應( Agarose gel electrophoresis )…………………………...21
2.3.11定序檢測( Sequencing )………………………………………………………….21
2.4 Sso-PDCD5蛋白質表現( Protein Expression )………………………………………….22
2.4.1篩選最佳表現條件( Time Course )……………………………………………….22
2.4.2大量表現蛋白質…………………………………………………………………..23
2.5 Sso-PDCD5蛋白質純化(Protein Purification)…………………………………………23
2.5.1超音波震盪破菌後離心……………………………………………………...…...23
2.5.2目標蛋白(Sso-PDCD5)之耐熱性…………………………………………………24
2.5.3硫酸銨沉降 (Ammonium Sulfate Precipitation)…………………………………24
2.5.3.1鹽析及沉澱法……………………………………………………………...24
2.5.3.2鹽析(salting out)……………………………………………………………24
2.5.3.3硫酸銨(Ammonia Sulfate)…………………………………………………24
2.5.4管柱純化(Fast Protein Liquid Chromatography)………………………………….25
2.5.4.1親和性純化法(Immobilized Metal Affinity Chromatography)……………25
2.5.4.2離子交換層析法(Ion Exchange Chromatography)………………………..25
2.5.4.3膠體過濾法(Size-exclusion Chromatography, Gel filtration)……………..26
2.6胺基酸序列C端剃除(C-terminal truncation)…………………………………….……...27
2.7蛋白質晶體繞射……………………………………………………………………….…27
2.7.1預長晶實驗(Pre-crystallization Test)……………………………………….……..27
2.7.2機器手臂篩選長晶條件…………………………………………………………..29
2.7.3手動長晶…………………………………………………………………………..29
2.7.4 X光繞射實驗……………………………………………………………………..29
2.8電腦軟體數據分析……………………………………………………………………….30
2.8.1 HKL2000………………………………………………………………………….30
2.8.2 CCP4i……………………………………………………………………………...30
2.8.3 Coot………………………………………………………………………………..30
2.8.4 Pymol……………………………………………………………………………...30
2.9 Sso-PDCD5_WT與Sso-PDCD5_CTT耐熱耐酸測試………………………………….30
2.10 目標蛋白質對雙股DNA的結合程度…………………………………………………32
第三章 實驗結果與討論…………………………………………………………….33
3.1建構目標基因Sso-PDCD5與Sso-PDCD5_CTT序列在pET-21a載體中…………….33
3.2篩選適合表現目標蛋白的勝任細胞與生長條件……………………………………….35
3.3 Sso-PDCD5蛋白質耐熱性………………………………………...…………………….35
3.4硫酸銨沉降Ammonium sulfate precipitation……………………...…………………….36
3.5 FPLC ( Fast Protein Liquid Chromatography ) 膠體過濾法……………………………36
3.6長晶條件篩選與上機…………………………………………….………………………39
3.6.1 Sso-PDCD5_FL長晶條件……….………………………………………………..39
3.6.2 Sso-PDCD5_CTT長晶條件………………………………………………………40
3.7繞射數據……………………….…………………………………………………………41
3.8解開PDCD5蛋白質結構的方法比較(X-ray、NMR)…………………………….…….43
3.9 Sso-PDCD5晶體結構……………………………………………………………………43
3.10 Sso-PDCD5的電性分布…………………………………….………………...………..44
3.11 Sso-PDCD5結構細節………………………………………………….………………..45
3.12 Sso-PDCD5與其同源蛋白比較………………………………………………………..46
3.13 Sso-PDCD5與其同源蛋白結構間比較……………………………………….…..…...47
3.14 Sso-PDCD5功能……………………………………………………………….……….48
3.14.1 螢光光譜Fluorescence Quenching實驗………………………………………..48
3.14.2等溫低定熱分析儀(Isothermal titration calorimetry)……………………...……49
3.14.3圓二色光譜Sso-PDCD5在高溫與低pH值的耐受度…………………………51
3.15電子顯微鏡影像分析…………………………………………………………………...53
3.16 Programmed Cell Death相關蛋白研究………………………………….……………..54
3.17未來方向………………………………………………………………………………...56
3.17.1 Sso-PDCD5與人類PDCD5訊號途徑差異……………………………………56
3.17.2 Sso-PDCD5高溫測試與雙股DNA結合能力……….…………………………57
參考文獻……………………………………………………………………………….……..58
附錄…………………………………….……………………………………………………..60

圖目錄
圖一、人類PDCD5蛋白導致細胞凋亡路徑…………………………………………….……2
圖二、細胞受到刺激進行內在途徑細胞凋亡………………………..…………………….…4
圖三、內在途徑與外在途徑細胞凋亡的不同……………….………………………………..4
圖四、a.Human PDCD5與Sso- PDCD5 DNA序列相似度…………….……………..………6
b. Human PDCD5與Sso- PDCD5胺基酸序列相似度…………..…….………………6
圖五、坐式長晶過程(蒸氣擴散法)…………………………….……………………..………8
圖六、布拉格定律原理圖……………………………………………………………..……….9
圖七、Sso-PDCD5_FL與Sso-PDCD5_CTT實驗架構…………………………….……….12
圖八、根據pET-21a基因圖篩選適當限制酶切位…………….…………………….………13
圖九、根據pET-21a全基因圖中挑選出BamHI切位……….…………………….……….14
圖十、基因定序結果,確認完整的Sso-PDCD5基因序列保存於E.coli(DH5α)載體為pET-21a中…………………………………………………………………………………….15
圖十一、Sso-PDCD5_CTT基因建構轉化至E.coli,DH5α菌株的過程………………….…19
圖十二、定序結果之Sso-PDCD5_CTT目標基因……………………………………….….22
圖十三、生產大量表現目標蛋白質(Sso-PDCD5)流程圖…………………………….……23
圖十四、膠體過濾法(Gel filtration)純化原理…………………………………………….…27
圖十五、a.輕微沉澱……………………………………………………………………….….29
b.非典型重度晶體沉澱………………………………………………....................29
圖十六、主要二級結構於圓二色光譜測得之標準圖形…………………………………….31
圖十七、Isothermal titration calorimetry等溫滴定微量熱儀示意圖………………………..32
圖十八、Sso-PDCD5_CTT 聚合酶鏈鎖反應產物………………………………………….34
圖十九、Sso-PDCD5_CTT 菌落聚合酶鏈鎖反應產物…………………………………….34
圖二十、利用NCBI網站BLAST比對Sso-PDCD5_CTT基因序列結果…………………35
圖二十一、SDS-PAGE顯示不同濃度硫酸銨沉降蛋白質(a) Sso-PDCD5_FL與 (b) Sso-PDCD5_CTT之結果…………………………………………………………………….36
圖二十二、a. Sso-PDCD5_FL膠體過濾法層析圖………………….……………….......…..37
b. SDS-PAGE確認膠體過濾純化後,Sso-PDCD5_FL蛋白質的純度……......37
圖二十三、a. Sso-PDCD5_CTT膠體過濾法層析圖………………………......………...…..38
b. SDS-PAGE確認膠體過濾純化後,Sso-PDCD5_CTT蛋白質的純度……...37
圖二十四、Sso-PDCD5的整體結構…………………………………………….…………..44
圖二十五、 Sso-PDCD5靜電表面電位……………………………………………………..45
圖二十六、Sso-PDCD5結構細節………………………….……………………………..….45
圖二十七、參與Sso-PDCD5橫截面鹽橋的胺基酸……………………………………...…46
圖二十八、PDCD5同源蛋白多序列比對…………………………….……………………..47
圖二十九、PDCD5代表性同源蛋白的NMR結構………………….…………………...….47
圖三十、Sso-PDCD5與其他PDCD5同源蛋白結構疊加圖……………………………..….48
圖三十一、a. Sso-PDCD5色胺酸 (W117) 螢光強度受DNA作用而逐次減弱之光譜….49
b. 色胺酸 (W117) 相對螢光強度隨DNA濃度之變化關係圖………………..49
圖三十二、a. Sso-PDCD5_FL滴定雙股DNA的等溫滴定量熱法結果…….………...……50
b. Sso-PDCD5_CTT滴定滴定雙股DNA的等溫滴定量熱法結果……...……50
圖三十三、Sso-PDCD5_FL變溫 (a) 與變pH (b) 的圓二色光譜以及Sso-PDCD5_CTT變溫(c)的圓二色光譜…………………………………………………..…………………...….53
圖三十四、DNA結合蛋白與DNA作用時的構型示意圖………………………………....53
圖三十五、Sso-PDCD5_FL與DNA作用的電子顯微鏡影像圖…………….…..…...….….54

表目錄
表一、Sso-PDCD5_CTT聚合酶鏈鎖反應所需材料與反應條件參數……………………...16
a. 聚合酶鏈鎖反應所需材料……………………………………..…………………16
b. 聚合酶鏈鎖反應條件參數…………………………………....……….………….16
表二、剪切反應所需材料與比例…………………………………………………….………17
表三、黏合反應實驗步驟……………………………………………………………….……18
表四、Sso-PDCD5_CTT菌落聚合酶鏈鎖反應所需材料與反應條件參數...............………20
a. 菌落聚合酶鏈鎖反應所需材料………………………………….………….……20
b. 菌落聚合酶鏈鎖反應條件參數…………….…………………………………….20
表五、50X TAE Buffer配方…………………………………………………………….……21
表六、PCT試劑成分…………………………………………………………………….……28
表七、預長晶濃度測試表………………………………………………………….................28
表八、自動點晶儀篩選出Sso-PDCD5_FL長晶條件與晶體照片……………...…………..39
表九、手動優化Sso-PDCD5_FL蛋白質晶體的條件……………….……….…………..….40
表十、自動點晶儀篩選出Sso-PDCD5_CTT長晶條件與晶體照片…………………..……41
表十一、Sso-PDCD5_FL與Sso-PDCD5_CTT的X-ray繞射數據……………….……...….42
表十二、Programmed Cell Death相關蛋白及其別名與功能性質描述………….……..…..55
參考文獻 參考文獻
1. Chen Y., Sun R., Han W., Zhang Y., Song Q., Di C., and Ma D. (2001). “Nuclear translocation of PDCD5 (TFAR19): an early signal for apoptosis?” FEBS Lett.
509(2):191-196
2. Li P., Fei H., Wang L., Xu H., Zhang H., and Zhang L. (2018). “PDCD5 regulates cell proliferation, cell cycle progression and apoptosis.” Oncol Lett.15(1), 1177-1183
3. Li, G., D. Ma and Y. Chen (2016). “Cellular functions of programmed cell death 5.” Biochim. Biophys. Acta 1863(4):572-580
4. Salvi, M., D. Xu, Y. Chen, A. Cabrelle, S. Sarno and L. A. Pinna (2009). “Programmed cell death 5 (PDCD5) is phosphorylated by CK2 in vitro and in 293T cells.” Biochem Biophys Res Commun 387(3):606-610
5. Zhuge C., Sun X., Chen Y., and Lei J (2016). “PDCD5 functions as a regulator of p53 dynamics in the DNA damage response.” J Theor Biol. 388:1-10
6. Thomas Ulas., S. Alexander Riemer., Melanie Zaparty., Bettina Siebers., and Dietmar Schomburg (2012). “Genome-Scale Reconstruction and Analysis of the Metabolic Network in the Hyperthermophilic Archaeon Sulfolobus Solfataricus.” PLoS One. 7(8): 43401
7. Hong, J., J. Zhang, Z. Liu, S. Qin, J. Wu and Y. Shi (2009). “Solution structure of S.cerevisiae PDCD5-like protein and its promoting role in H(2)O(2)-induced apoptosis in yeast.” Biochemistry 48(29):6824-6834
8. Reiter J., Herker E., Madeo F., and Schmitt MJ (2005). “Viral killer toxins induce caspase-mediated apoptosis in yeast.” J Cell Biol. 168(3):353-358
9. Ivanovska I., and Hardwick JM (2005). “Viruses activate a genetically conserved cell death pathway in a unicellular organism.” J Cell Biol. 170(3):391-399

10. Suarez MF., Filonova LH., Smertenko A., Savenkov EI., Clapham DH., von Arnold S., Zhivotovsky B., and Bozhkov PV (2004). “Metacaspase-dependent programmed cell death is essential for plant embryogenesis.” Curr Biol. 14(9):R339-340
11. Yang H., Ren Q., and Zhang Z (2008). “Cleavage of Mcd1 by caspase-like protease Esp1 promotes apoptosis in budding yeast.” Mol Biol Cell. 19(5):2127-2134
12. Fuchs Y., and Steller H (2015). “Live to die another way: modes of programmed cell death and the signals emanating from dying cells.” Nat Rev Mol Cell Biol. 16(6):329-344
13. Swamy MJ., Sankhala RS., and Singh BP (2019). “Thermodynamic Analysis of Protein-Lipid Interactions by Isothermal Titration Calorimetry.” Methods Mol Biol. 2003:71-89
14. Matsuo K., and Gekko K (2019). “Circular-Dichroism and Synchrotron-Radiation Circular-Dichroism Spectroscopy as Tools to Monitor Protein Structure in a Lipid Environment.” Methods Mol Biol. 2003:253-279
15. Zhuge C., Sun X., Chen Y., and Lei J (2016). “Corrigendum to ′′PDCD5 interacts with p53 and functions as a regulator of p53 dynamics in the DNA damage response.” J Theor Biol. 396:210
16. Zhao H., Peng C., Lu X., Guo M., Yang T., Zhou J., and Hai Y (2019). “PDCD5 inhibits osteosarcoma cell metastasis via targeting TGF-β1/Smad signaling pathway and is associated with good prognosis.” Am J Transl Res. 11(2):1116-1128
17. Lin KF., Hsu JY., Hsieh DL., Tsai MJ., Yeh CH., and Chen CY (2019). “Crystal structure of the programmed cell death 5 protein from Sulfolobus solfataricus.” Acta Crystallogr F Struct Biol Commun. 75(Pt 2):73-79
18. Zhou Z., Jian J., Wang Z., Hu J., and Liu W. (2015).J Int Oncol Vol.42, No.5
指導教授 陳青諭(Chin-Yu Chen) 審核日期 2019-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明