博碩士論文 105827611 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:58 、訪客IP:3.144.15.87
姓名 安貝蘇(Anir Batsukh)  查詢紙本館藏   畢業系所 生醫科學與工程學系
論文名稱 益生菌(Leuconostoc mesenteroides) 細菌對糖尿病小鼠血糖水平的影響
(Effect of probiotic (Leuconostoc mesenteroides) bacteria on the regulation of blood glucose level in diabetic mice)
相關論文
★ Intelligent nature-derived coordinative hydrogel incorporated with HRP as dressing for infected wounds★ 表皮葡萄球菌在人類皮膚微生物總體對皮膚訊號與腦波訊號影響
★ 土壤微生物組體研究:藉由內生細菌誘導之高GABA含量水稻增加神經肽Y以及減輕小鼠焦慮★ Fermentation of Leuconostoc mesenteroides reduces abdominal fat accumulation in high-fat diet mice
★ 選擇性發酵引發劑(SFI)觸發表皮葡萄球菌發酵以緩解UV-B誘導的自由基生成★ Identify and characterize the fermenting and electrogenic skin bacteria using selective prebiotics
★ 有益微生物的真菌學和細菌學研究: 在農業和人類健康中的應用★ 人體皮膚致電微生物組通過調節鐵和自由基來減輕紫外線B引起的皮膚損傷。
★ 微生物組中的細菌作為治療人類疾病的生物療法★ 皮膚表皮葡萄球菌作為電力活性菌以抑制痤瘡丙酸桿菌
★ 鼠李糖乳桿菌作為益生菌對抗 SARS-CoV-2 膜糖蛋白誘導的炎症★ Flavin mononucleotide-based electricity production by Staphylococcus epidermidis alleviates SARS-CoV-2- Nucleocapsid Phosphoprotein-induced IL-6 expression
★ Profiling the Age-related Microbiome via Detection of Antibodies to Gut Bacteria★ 基於PEG的益生元影響皮膚細菌和皮膚電的發酵
★ 液化澱粉芽孢桿菌用於產生富含GABA的水稻以增強小鼠皮膚中膠原蛋白表達的可能機制★ 基於PEG的益生元對痤瘡痤瘡桿菌的表皮葡萄球菌發酵和電的研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 益生菌(Leuconostoc mesenteroides) 細菌對糖尿病小鼠血糖水平的影響

摘要:
本研究的目的是檢查益生菌是否可以調節糖尿病小鼠的血糖水平。從Aaruul(一種蒙古乾凝乳)中分離出10種不同的細菌菌株,並通過16S rRNA測序鑑定。 這些鑑定的細菌是金黃色葡萄球菌,芽孢桿菌,單純芽孢桿菌,腸膜明串珠菌,葡聚醣芽孢桿菌,人葡萄球菌,馬尾藻,短小芽孢桿菌,表皮葡萄球菌,嗜水氣單胞菌 和腸膜明串珠菌。腸膜明串珠菌 可以在沒有冷凍室的室溫,pH值在3到7之間下存活。 體外實驗的結果表明,細菌可以使用葡萄糖作為碳源來觸發發酵。 已經證明,細菌發酵可以產生短鏈脂肪酸(SCFA),包括丁酸。用鏈脲佐菌素(STZ)注射小鼠顯著增加血液中的葡萄糖,模擬1型糖尿病的表型。 通過腹部ICR小鼠注射給予丁酸一周增加胰島素並降低STZ誘導的糖尿病小鼠中的葡萄糖。 此外,丁酸的給藥降低了IL-6的水平,IL-6是一種可以促進胰島β細胞功能障礙和異常葡萄糖代謝的細胞因子。 我們的研究首次表明,腸膜明串珠菌 是一種益生菌,丁酸可作為治療高血糖的有益益生菌代謝產物。

關鍵詞:丁酸,糖尿病,腸膜明串珠,益生菌,短鏈脂肪酸(SCFA)
摘要(英) Effect of probiotic (Leuconostoc mesenteroides) bacteria on the regulation of blood glucose level in diabetic mice

Abstract:
The aim of this study is to exam if probiotic bacteria can regulate the level of blood glucose in diabetic mice. Ten different bacterial strains were isolated from Aaruul, a Mongolian dried curd, and identified by 16S rRNA sequencing. These identified bacteria are Staphylococcus aureus, Bacillus sp, Bacillus simplex, Leuconostoc mesenteroides, Paenibacillus glucanolyticus, Staphylococcus hominis, Megasphaera massiliensis, Bacillus pumilus, Staphylococcus epidermidis, Enterobacter Xiangfangensis and Leuconostoc mesenteroides. Leuconostoc mesenteroides can survive in the room temperature without a freezer and at pH values in the range from 3 to 7. Results from in vitro experiments indicated that the bacteria can use glucose as a carbon source to trigger fermentation. It has been documented that bacterial fermentation can produce short-chain fatty acids (SCFAs) including butyric acid. Injection of mice with streptozotocin (STZ) dramatically increased the glucose in the blood, mimicking a phenotype of Type 1 diabetes. Administration of butyric acid by injection in abdominal ICR mice for a week increased insulin and decreased glucose in STZ-induced diabetic mice. In addition, administration of butyric acid lowered the level of IL-6, a cytokine which can promote islet β-cell dysfunction and abnormal glucose metabolism. Our study demonstrates for the first time that Leuconostoc mesenteroides is a probiotic bacterium and butyric acid acts as a beneficial probiotic metabolite for the treatment of hyperglycemia.

Keywords: butyric acid, diabetes, Leuconostoc mesenteroides, probiotics, short chain fatty acids (SCFAs)
關鍵字(中) ★ 丁酸
★ 糖尿病
★ 腸膜明串珠
★ 益生菌
★ 短鏈脂肪酸(SCFA)
關鍵字(英) ★ butyric acid
★ diabetes
★ Leuconostoc mesenteroides
★ probiotics
★ short chain fatty acids (SCFAs)
論文目次 CHAPTER 1: INTRODUCTION: 1
1.1 Mongolian traditional dried curd milk: 1
1.2 Background information: 1
1.2.1 Method:1
1.2.2 Minerals:3
1.3 Activities of dried curd: 4
1.3.1 Antibacterial activity: 4
1.3.2 Against influenza: 5
1.3.3 Antiallergic activity: 5
1.3.4 Angiotensin-hypertensive peptide:5
2. Leuconostoc mesenteroides: 5
2.1 Probiotic activity of L.mesenteroides: 7
2.1.1 Anticancer activity: 7
2.1.2 Bacteriocin activity: 7
2.2 Function of probiotic to produce SCFAs: 7
3. Diabetes mellitus: 8
3.1 Type 1 Diabetes mellitus: 9
3.2 Type 2 Diabetes mellitus:10
3.3 Treatments of diabetes: 11
3.3.1 Butyrate in prevention and treatment of diabetes: 11
CHAPTER 2: MATERIALS AND METHODS
1. Apparatus or instruments:13
2. Reagents: 11
1. Probiotic bacterium identification: 15
1.1 Preparation of bacterium sample: 15
1.2 DNA extraction, PCR and 16s RNA sequencing: 15
2. Making dried curd milk using Leuconostoc mesenteroides: 17
2.1 Leuconostoc mesentreoides fermenting cow milk (yogurt): 17
2.2 Making dried curd milk using Leuconostoc mesenteroides 17
3. Probiotic properties (Leuconostoc mesenteroides): 17
3.1 Leuconostoc mesenteroides growth temperature, heat and pH value: 18
3.2 Leuconostoc mesenteroides fermentation: 18
4. Butyric acid detection by HPLC from mice intestine after feeding with L.mesenteroides: 18
4.1 Sample preparation: 18
4.1.1 Animal experiment: 19
4.1.2 Preparation of samples for analysis:19
4.2 Determination of Butyric acid:19
4.2.1 Butyric acid standard stock and sample for HPLC analysis: 19
4.3 Preparation of calibration standard curve: 20
5. Butyric acid treatment in Diabetic induced mice 20
5.1 Blood glucose index:21
5.2 Preparation of the blood sample for insulin and IL-6 analysis: 21
5.2.1 Insulin analysis by ELISA test: 21
5.2.2 IL-6 analysis by ELISA test:22
CHAPTER 3: RESULTS
1. Identification of probiotics: 24
2. Making dried curd with Leuconostoc mesenteroides 25
3. Probiotic properties: 26
3.1 Leuconostoc mesenteroides growth temperature, heat and pH value: 26
3.2 Leuconostoc mesenteroides heat resistance: 27
3.3 Leuconostoc mesenteroides pH value: 28
3.4 Leuconostoc mesenteroides fermentation: 29
3.4.1 Determination of Butyric acid by HPLC: 30
4. HPLC analysis for Butyric acid from mice intestine sample: 31
5. Butyric acid treatment in diabetic induced mice 32
5.1 The blood glucose level of Butyric acid treatment in diabetic mice: 32
5.2 Insulin level of Butyric acid treatment in diabetes mellitus mice: 33
5.3 IL-6 analysis: 34
6. CHAPTER 4: DISCUSSION AND CONCLUSION: 36
7. CHAPTER 5: REFERENCES:38
參考文獻 1. Daginder, E., Aaruul-a Mongolian dried curdled milk. 2015.
2. Chen, Y., et al., Identification of angiotensin I-converting enzyme inhibitory peptides from koumiss, a traditional fermented mare′s milk. 2010. 93(3): p. 884-892.
3. Ren, Y., W. Liu, and H.J.K.j.f.f.s.o.a.r. Zhang, Identification of coccoidal bacteria in traditional fermented milk products from Mongolia, and the fermentation properties of the predominant species, Streptococcus thermophilus. 2015. 35(5): p. 683.
4. Bae, I., et al., Traditional Dairy Products by Lactic Acid Bacteria in Mongolia. Vol. 22. 2002.
5. Park, Y., et al., 0509 Evaluation of mineral compositions in commercial Mongolian dried yogurts (Aaruul) marketed at retail stores in Mongolia. 2016. 94(supplement5): p. 244-245.
6. Inhyu, B., et al., Traditional Dairy Products by Lactic Acid Bacteria in Mongolia. 2002. 22(2): p. 183-191.
7. Gösta, B.J.T.P.P.S.A.-. Dairy processing handbook. 1995. 86.
8. Batdorj, B., et al., Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. 2006. 101(4): p. 837-848.
9. Takeda, S., et al., Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. 2011. 11(12): p. 1976-1983.
10. Takeda, S., et al., Antiallergic activity of probiotics from Mongolian dairy products on type I allergy in mice and mode of antiallergic action. 2014. 9: p. 60-69.
11. Chen, Y., et al., Angiotensin-converting enzyme inhibitory activity of Lactobacillus helveticus strains from traditional fermented dairy foods and antihypertensive effect of fermented milk of strain H9. 2014. 97(11): p. 6680-6692.
12. Reiter B, O.J., Nutritional studies on cheese starter. 1. Vitamin and
amino acid requirements of single strain starters. J Dairy Res 29:63, 1982.
13. Aman, A., N.N. Siddiqui, and S.A.U.J.C.p. Qader, Characterization and potential applications of high molecular weight dextran produced by Leuconostoc mesenteroides AA1. 2012. 87(1): p. 910-915.
14. Allameh, S.K., et al., Isolation, identification and characterization of Leuconostoc mesenteroides as a new probiotic from intestine of snakehead fish (Channa striatus). 2012. 11(16): p. 3810-3816.
15. De Paula, A.T., et al., Leuconostoc mesenteroides SJRP55: a potential probiotic strain isolated from Brazilian water buffalo mozzarella cheese. 2015. 65(2): p. 899-910.
39
16. DeMoss, R., R. Bard, and I.J.J.o.b. Gunsalus, The mechanism of the heterolactic fermentation: a new route of ethanol formation. 1951. 62(4): p. 499.
17. Cogan, T.M., et al., Effects of pH and sugar on acetoin production from citrate by Leuconostoc lactis. 1981. 41(1): p. 1-8.
18. Shukla, R., et al., Leuconostoc mesenteroides NRRL B-1149 as probiotic and its dextran with anticancer properties. 2014. 3(1).
19. Kekkonen, R.A., et al., Probiotic Leuconostoc mesenteroides ssp. cremoris and Streptococcus thermophilus induce IL-12 and IFN-γ production. 2008. 14(8): p. 1192.
20. Tagg, J.R., A.S. Dajani, and L.W.J.B.r. Wannamaker, Bacteriocins of gram-positive bacteria. 1976. 40(3): p. 722.
21. Revol‐Junelles, A.M., et al., Leuconostoc mesenteroides subsp. mesenteroides FR52 synthesizes two distinct bacteriocins. 1996. 23(2): p. 120-124.
22. Papathanasopoulos, M.A., et al., Multiple Bacteriocin Production by Leuconostoc mesenteroidesTA33a and Other Leuconostoc/Weissella Strains. 1997. 35(6): p. 331-335.
23. Wong, J.M., et al., Colonic health: fermentation and short chain fatty acids. 2006. 40(3): p. 235-243.
24. Zhang, C., et al., Current progress on butyric acid production by fermentation. 2009. 59(6): p. 656-663.
25. Friedel, D., G.M.J.J.o.P. Levine, and E. Nutrition, Effect of short-chain fatty acids on colonic function and structure. 1992. 16(1): p. 1-4.
26. Cook, S., J.J.A.p. Sellin, and therapeutics, Short chain fatty acids in health and disease. 1998. 12(6): p. 499-507.
27. Aguiree, F., et al., IDF diabetes atlas. 2013.
28. Alberti, K.G.M.M. and P.f.J.D.m. Zimmet, Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. 1998. 15(7): p. 539-553.
29. Atkinson, M.A. and G.S.J.T.L. Eisenbarth, Type 1 diabetes: new perspectives on disease pathogenesis and treatment. 2001. 358(9277): p. 221-229.
30. Asif, M.J.J.o.e. and h. promotion, The prevention and control the type-2 diabetes by changing lifestyle and dietary pattern. 2014. 3.
31. Sánchez-Taínta, A., et al., Adherence to a Mediterranean-type diet and reduced prevalence of clustered cardiovascular risk factors in a cohort of 3204 high-risk patients. 2008. 15(5): p. 589-593.
32. Panagiotakos, D.B., et al., The epidemiology of Type 2 diabetes mellitus in Greek adults: the ATTICA study. 2005. 22(11): p. 1581-1588.
33. Chineye, S., C. Unachukwu, and A.J.D.I. Hart, Diet and diabetes: theory and practice for care providers. 2007. 15: p. 9-11.
34. Cade, W.T.J.P.t., Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. 2008. 88(11): p. 1322-1335.
40
35. Skyler, J.S., et al., Differentiation of Diabetes by Pathophysiology, Natural History, and Prognosis. 2017. 66(2): p. 241-255.
36. Wolf, A.M., et al., Translating lifestyle intervention to practice in obese patients with type 2 diabetes: Improving Control with Activity and Nutrition (ICAN) study. 2004. 27(7): p. 1570-1576.
37. Control, D. and C.T.R.G.J.N.E.j.o. medicine, The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. 1993. 329(14): p. 977-986.
38. Gao, Z., et al., Butyrate improves insulin sensitivity and increases energy expenditure in mice. 2009.
39. Guo, Y., et al., Sodium butyrate ameliorates streptozotocin-induced type 1 diabetes in mice by inhibiting the HMGB1 expression. 2018. 9: p. 630.
40. Huda-Faujan, N., et al., The impact of the level of the intestinal short chain fatty acids in inflammatory bowel disease patients versus healthy subjects. 2010. 4: p. 53.
41. Chaudhry, Z.Z., et al., Streptozotocin is equally diabetogenic whether administered to fed or fasted mice. 2013. 47(4): p. 257-265.
42. Lagouge, M., et al., Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. 2006. 127(6): p. 1109-1122.
43. Oh, Y.S., et al., Interleukin‐6 treatment induces beta‐cell apoptosis via STAT‐3‐mediated nitric oxide production. 2011. 27(8): p. 813-819.
指導教授 黃俊銘(Eric Chun-Ming Huang) 審核日期 2019-6-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明