摘要(英) |
According to the cold chain, among its inventory management data it shown feature with following characteristics, such as raw material till finished product temperature management, process time control, fixed purchase quantity, and random actual demand, etc. When the raw milk supply is excess, the daily demand of fresh milk products are being determined through estimation of raw milk distribution, which proportion is distinguished base on distributing best possible proportion among the feasible amount of fresh milk and ESL (Extended Shelf Life) milk. However, how do we determine the precise and efficient proportion to avoid excess supply and achieve the highest revenue results?
This study using relevant inventory management characteristics, such as product capacity demand ratio, minimum batch production ratio, demand change ratio, supply rate, etc. as the independent variable, using Multiple Regression Analysis method to find out the related factors that affect the product′s expiration and scrapping.
In order to deduce the expected expiration rate of the fresh milk product of the case company, it’s aiming on achieving the goal of maximize revenue and balance the price difference between fresh milk and ESL (Extended Shelf Life) milk. Ultimately, determine the key supply rate of fresh milk to avoid excess supply and reduce product expiration.
In chapter five, this study established simulated scenario presented and estimated the optimal supply rate of the fresh milk products by model (1) and indicated the change for the amount of highest revenue based on the wide variation in prices of ESL (Extended Shelf Life) milk.
|
參考文獻 |
˙西文參考文獻
Adan, I., van Eenige, M., & Resing, J. (1995). Fitting discrete distributions on the first two moments. Probability in the Engineering and Informational Sciences, 9(4), 623-632.
Broekmeulen, R. A., & van Donselaar, K. H. (2009). A heuristic to manage perishable inventory with batch ordering, positive lead-times, and time-varying demand. Computers & Operations Research, 36(11), 3013-3018.
Buzby, J. C., Hyman, J., Stewart, H., & Wells, H. F. (2011). The value of retail‐and consumer‐level fruit and vegetable losses in the United States. Journal of Consumer Affairs, 45(3), 492-515.
Dillon, M., Oliveira, F., & Abbasi, B. (2017). A two-stage stochastic programming model for inventory management in the blood supply chain. International Journal of Production Economics, 187, 27-41.
Ehrhardt, R. (1979). The power approximation for computing (s, S) inventory policies. Management Science, 25(8), 777-786.
Ehrhardt, R., & Mosier, C. (1984). A revision of the power approximation for computing (s, S) policies. Management Science, 30(5), 618-622.
Ferguson, M., Jayaraman, V., & Souza, G. C. (2007). Note: An application of the EOQ model with nonlinear holding cost to inventory management of perishables. European Journal of Operational Research, 180(1), 485-490.
Knolmayer, G. F., Mertens, P., Zeier, A., & Dickersbach, J. T. (2009). Supply Chain Management Based on SAP Systems: Architecture and Planning Processes. Springer Science & Business Media.
Hair Joseph, F., Anderson Rolph, E., Tatham Ronald, L., & Black William, C. (1994). Multivariate Data Analysis with Readings. Macmillan Publishing Company.
Stadtler, H., & Kilger, C. (2002). Supply Chain Management and Advanced Planning (Vol. 4). Springer-Verlag.
Janssen, L., Claus, T., & Sauer, J. (2016). Literature review of deteriorating inventory models by key topics from 2012 to 2015. International Journal of Production Economics, 182, 86-112.
Kaspi, H., & Perry, D. (1983). Inventory systems of perishable commodities. Advances in Applied Probability, 15(3), 674-685.
Laudon, K. C., & Laudon, J. P. (2015). Management Information Systems: Managing the Digital Firm Plus MyMISLab with Pearson eText--Access Card Package. Prentice Hall Press.
Minner, S., & Transchel, S. (2017). Order variability in perishable product supply chains. European Journal of Operational Research, 260(1), 93-107.
Nahmias, S. (1982). Perishable inventory theory: A review. Operations Research, 30(4), 680-708.
Neter, J., Kutner, M. H., Nachtsheim, C. J., & Wasserman, W. (1996). Applied Linear Statistical Models (Vol. 4, p. 318). Chicago: Irwin.
van Donselaar, K. H., & Broekmeulen, R. A. (2012). Approximations for the relative outdating of perishable products by combining stochastic modeling, simulation and regression modeling. International Journal of Production Economics, 140(2), 660-669.
van Zyl, G. J. (1963). Inventory control for perishable commodities. North Carolina State University. Dept. of Statistics.
˙中文參考文獻
行政院農業委員會,農業統計年報(106年),行政院農業委員會,台北,2017。
食品藥物管理署:食藥署調查各大通路商「即期食品」結果說明。2016年5月23日,取自http://www.fda.gov.tw。
桃園市政府主計處:桃園市平均每戶家庭消費支出。2017年10月31,取自https://dbas.tycg.gov.tw/。
財團法人食品工業發展研究所,2018食品產業年鑑,經濟部技術處,台北,2018。
陳順宇,多變量分析,華泰文化出版社,台北市,2007。
陳正昌、程炳林、陳新豐等,多變量分析方法:統計軟體應用,五南出版社,台北市,2013。
|