參考文獻 |
參考文獻
第1章
[1] Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).
[2] Luan, N., Ding, C. & Yao, J. A refractive index and temperature sensor based on surface plasmon resonance in an exposed-core microstructured optical fiber. IEEE Photonics J. 8, 1 (2016).
[3] Qin, J., Chen, Y.-H., Ding, B., Blaikie, R. J. & Qiu, M. Plasmonic gas sensing based on cavity-coupled metallic nanoparticles. J. Phys. Chem. C 121, 24740 (2017).
[4] Lim, J. K. & Joo, S.-W. Gold nanoparticle-based pH sensor in highly alkaline region at ph > 11: surface-enhanced Raman scattering study. Appl Spectrosc 60, 847 (2006).
[5] Yuan, Z., Hu, C.-C., Chang, H.-T. & Lu, C. Gold nanoparticles as sensitive optical probes. Analyst 141, 1611 (2016).
[6] Luo, W. et al. Responsive hydrogel-based photonic nanochains for microenvironment sensing and imaging in real time and high resolution. Nano Lett. (posted 11 January 2018, in press).
[7] Noor, M. O. & Krull, U. J. Camera-Based Ratiometric Fluorescence Transduction of Nucleic Acid Hybridization with Reagentless Signal Amplification on a Paper-Based Platform Using Immobilized Quantum Dots as Donors. Anal. Chem. 86, 10331 (2014).
[8] Zhou, J., Lei, G., Zheng, L. L., Gao, P. F. & Huang, C. Z. HSI colour-coded analysis of scattered light of single plasmonic nanoparticles. Nanoscale 8, 11467 (2016).
[9] Zhou, J. et al. Color resolution improvement of the dark-field microscopy imaging of single light scattering plasmonic nanoprobes for microRNA visual detection. Nanoscale 9, 4593 (2017).
[10] Lodewijks, K., Van Roy, W., Borghs, G., Lagae, L. & Van Dorpe, P. Boosting the figure-of-merit of LSPR-based refractive index sensing by phase-sensitive measurements. Nano Lett. 12, 1655 (2012).
[11] Cao, S. et al. Highly sensitive surface plasmon resonance biosensor based on a low-index polymer optical fiber. Opt. Express 26, 3988 (2018).
[12] Stuart, D. A., Haes, A. J., McFarland, A. D., Nie, S. & Van Duyne, R. P. Refractive-index-sensitive, plasmon-resonant-scattering, and surface-enhanced Raman-scattering nanoparticles and arrays as biological sensing platforms. Proc. SPIE 5327, 60 (2004).
[13] Jana, D., Matti, C., He, J. & Sagle, L. Capping agent-free gold nanostars show greatly increased versatility and sensitivity for biosensing. Anal. Chem. 87, 3964 (2015).
[14] Ma, J., Zhan, L., Li, R. S., Gao, P. F. & Huang, C. Z. Color-encoded assays for the simultaneous quantification of dual cancer biomarkers. Anal. Chem. 89, 8484 (2017).
[15] Le Ru, E. C. & Etchegoin, P. G. Quantifying SERS enhancements. MRS Bull. 38, 631 (2013).
[16] Ding, S.-Y., You, E.-M., Tian, Z.-Q. & Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042 (2017).
[17] Hache, F., Ricard, D., Flytzanis, C. & Kreibig, U. The optical kerr effect in small metal particles and metal colloids: The case of gold. Appl. Phys. A 47, 347 (1988).
[18] Safonov, V. P. et al. Nondegenerate four-wave mixing in gold nanocomposites formed by ion implantation. Proc. SPIE 3788, 34 (1999).
[19] Drachev, V. P., Buin, A. K., Nakotte, H. & Shalaev, V. M. Size Dependent χ (3) for conduction electrons in ag nanoparticles. Nano Lett. 4, 1535 (2004).
[20] Zhang, Y. & Wang, Y. Nonlinear optical properties of metal nanoparticles: a review. RSC Adv. 7, 45129 (2017).
[21] Masia, F., Langbein, W., Watson, P. & Borri, P. Resonant four-wave mixing of gold nanoparticles for three-dimensional cell microscopy. Opt. Lett. 34, 1816 (2009).
[22] Wang, S.-H., Lee, C.-W., Chiou, A. & Wei, P.-K. Size-dependent endocytosis of gold nanoparticles studied by three-dimensional mapping of plasmonic scattering images. J Nanobiotechnol 8, 33 (2010).
[23] Wan, X.-Y. et al. Real-time light scattering tracking of gold nanoparticles- bioconjugated respiratory syncytial virus infecting HEp-2 cells. Sci Rep 4, 4529 (2015).
[24] Cai, W. Applications of gold nanoparticles in cancer nanotechnology. NSA 1, 17 (2008).
[25] Huang, X., Jain, P. K., El-Sayed, I. H. & El-Sayed, M. A. Plasmonic photothermal therapy (PPTT) using gold nanoparticles. Lasers Med Sci 23, 217 (2008).
[26] Huang, X. & El-Sayed, M. A. Plasmonic photo-thermal therapy (PPTT). Alexandria Journal of Medicine 47, 1 (2011).
[27] Bagley, A. F., Hill, S., Rogers, G. S. & Bhatia, S. N. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7, 8089 (2013).
[28] Wang, S., Xu, H. & Ye, J. Plasmonic rod-in-shell nanoparticles for photothermal therapy. Phys. Chem. Chem. Phys. 16, 12275 (2014).
[29] Abou El-Nour, K. M. M., Eftaiha, A., Al-Warthan, A. & Ammar, R. A. A. Synthesis and applications of silver nanoparticles. Arabian Journal of Chemistry 3, 135 (2010).
[30] Fayaz, A. M. et al. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine 6, 103 (2010).
[31] Burdușel, A.-C. et al. Biomedical applications of silver nanoparticles: an up-to-date overview. Nanomaterials 8, 681 (2018).
[32] Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater 10, 911 (2011).
[33] Zayats, A. V., Smolyaninov, I. I. & Maradudin, A. A. Nano-optics of surface plasmon polaritons. Physics Reports 408, 131 (2005).
[34] Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484 (2009).
[35] Shegai, T. et al. Managing light polarization via plasmon-molecule interactions within an asymmetric metal nanoparticle trimer. Proceedings of the National Academy of Sciences 105, 16448 (2008).
[36] Li, L. et al. Plasmonic polarization generator in well-routed beaming. Light Sci. Appl 4, e330 (2015).
[37] Tahir, A. A., Schulz, S. A., De Leon, I. & Boyd, R. W. Design principles for wave plate metasurfaces using plasmonic L-shaped nanoantennas. J. Opt. 19, 035001 (2017).
[38] Palomba, S., Danckwerts, M. & Novotny, L. Nonlinear plasmonics with gold nanoparticle antennas. J. Opt. A: Pure Appl. Opt. 11, 114030 (2009).
[39] Panoiu, N. C., Sha, W. E. I., Lei, D. Y. & Li, G.-C. Nonlinear optics in plasmonic nanostructures. J. Opt. 20, 083001 (2018).
[40] Boltasseva, A. et al. Integrated optical components utilizing long-range surface plasmon polaritons. J. Lightwave Technol. 23, 413 (2005).
[41] Wang, Z., Cheng, F., Winsor, T. & Liu, Y. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology 27, 412001 (2016).
[42] Hendry, E. et al. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nature Nanotech 5, 783 (2010).
[43] Zhao, Y. et al. Chirality detection of enantiomers using twisted optical metamaterials. Nat Commun 8, 14180 (2017).
[44] Maoz, B. M. et al. Amplification of Chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett. 13, 1203 (2013).
[45] Liu, Y., Wang, R. & Zhang, X. Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures. Opt. Express 22, 4357 (2014).
[46] Tang, Y. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333 (2011).
[47] Freestone, I., Meeks, N., Sax, M. & Higgitt, C. The Lycurgus cup – a Roman nanotechnology. Gold Bulletin 40, 270 (2007).
[48] Wood, R. W. On a Remarkable case of uneven distribution of light in a diffraction grating spectrum. Proc. Phys. Soc. London 18, 269 (1902).
[49] Lord Rayleigh (Strutt, J., W.) On the dynamical theory of gratings. R. Soc. London, Ser. A 79, 399 (1907).
[50] Fano, U. The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s Waves). J. Opt. Soc. Am. 31, 213 (1941).
[51] Ritchie, R. H. Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874 (1957).
[52] Powell, C. J. & Swan, J. B. Origin of the characteristic electron energy losses in aluminum. Phys. Rev. 115, 869 (1959).
[53] Otto, A. Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Physik 216, 398 (1968).
[54] Kretschmann, E. & Raether, H. Radiative Decay of non-radiative surface plasmons excited by light. Z Naturf. 23A, 2135 (1968).
[55] Maxwell Garnett, J., C. XII. Colours in metal glasses and in metallic films. Philos. Trans. R. Soc. London 203, 385 (1904).
[56] Dubiel, M., Haug, J., Kruth, H., Hofmeister, H. & Schicke, K.-D. Ag/Na ion exchange in soda-lime glasses and the formation of small Ag nanoparticles. Materials Science and Engineering: B 149, 146 (2008).
[57] Kreibig, U. & Zacharias, P. Surface plasma resonances in small spherical silver and gold particles. Z. Physik 231, 128 (1970).
[58] Borys, N. J. & Lupton, J. M. Surface-enhanced light emission from single hot spots in Tollens reaction silver nanoparticle films: linear versus nonlinear optical excitation. J. Phys. Chem. C 115, 13645 (2011).
[59] Axelevitch, A., Apter, B. & Golan, G. Simulation and experimental investigation of optical transparency in gold island films. Opt. Express 21, 4126 (2013).
[60] Pavaskar, P., Hsu, I.-K., Theiss, J., Hsuan Hung, W. & Cronin, S. B. A microscopic study of strongly plasmonic Au and Ag island thin films. Journal of Applied Physics 113, 034302 (2013).
[61] De Zuani, S., Peterseim, T., Berrier, A., Gompf, B. & Dressel, M. Second harmonic generation enhancement at the percolation threshold. Appl. Phys. Lett. 104, 241109 (2014).
[62] Weitz, D. A., Garoff, S., Gersten, J. I. & Nitzan, A. The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface. The Journal of Chemical Physics 78, 5324 (1983).
[63] Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783 (1985).
[64] Maxwell, D. J., Emory, S. R. & Nie, S. Nanostructured thin-film materials with surface-enhanced optical properties. Chem. Mater. 13, 1082 (2001).
[65] Perumal, J., Kong, K. V., Dinish, U. S., Bakker, R. M. & Olivo, M. Design and fabrication of random silver films as substrate for SERS based nano-stress sensing of proteins. RSC Adv. 4, 12995 (2014).
[66] Kang, M., Park, S.-G. & Jeong, K.-H. Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Sci Rep 5, 14790 (2015).
[67] Kuwata-Gonokami, M. et al. Giant optical activity in quasi-two-dimensional planar nanostructures. Phys. Rev. Lett. 95, 227401 (2005).
[68] Decker, M. et al. Strong optical activity from twisted-cross photonic metamaterials. Opt. Lett. 34, 2501 (2009).
[69] Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333 (2011).
[70] Valev, V. K., Baumberg, J. J., Sibilia, C. & Verbiest, T. Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook. Adv. Mater. 25, 2517 (2013).
[71] Liu, Y. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494 (2011).
[72] Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).
[73] Hulteen, J. C. et al. Nanosphere lithography: size-tunable silver nanoparticle and surface cluster arrays. J. Phys. Chem. B 103, 3854 (1999).
[74] Jensen, T. R., Schatz, G. C. & Van Duyne, R. P. Nanosphere lithography: surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet−visible extinction spectroscopy and electrodynamic modeling. J. Phys. Chem. B 103, 2394 (1999).
[75] Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).
[76] Weber, M. L. & Willets, K. A. Correlated super-resolution optical and structural studies of surface-enhanced Raman scattering hot spots in silver colloid aggregates. J. Phys. Chem. Lett. 2, 1766 (2011).
[77] Yan, B., Boriskina, S. V., & Reinhard, B. M. Optimizing gold nanoparticle cluster configurations (n ≤ 7) for array applications. J Phys Chem C Nanomater Interfaces. 115 4578 (2011).
[78] Shegai, T., Brian, B., Miljković, V. D. & Käll, M. Angular distribution of surface-enhanced raman scattering from individual Au nanoparticle aggregates. ACS Nano 5, 2036 (2011).
[79] Chuntonov, L. & Haran, G. Maximal Raman optical activity in hybrid single molecule-plasmonic nanostructures with multiple dipolar resonances. Nano Lett. 13, 1285 (2013).
[80] Tian, X., Zhou, Y., Thota, S., Zou, S. & Zhao, J. Plasmonic coupling in single silver nanosphere assemblies by polarization-dependent dark-field scattering spectroscopy. J. Phys. Chem. C 118, 13801 (2014).
[81] Lee, H. et al. Quantitative plasmon mode and surface-enhanced Raman scattering analyses of strongly coupled plasmonic nanotrimers with diverse geometries. Nano Lett. 15, 4628 (2015).
[82] Funston, A. M., Davis, T. J., Novo, C. & Mulvaney, P. Coupling modes of gold trimer superstructures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3472 (2011).
[83] Wu, J. et al. Angle-resolved plasmonic properties of single gold nanorod dimers. Nano-Micro Lett. 6, 372 (2014).
[84] Panaro, S. et al. Dark to Bright Mode Conversion on Dipolar Nanoantennas: A Symmetry-Breaking Approach. ACS Photonics 1, 310 (2014).
[85] Black, L.-J., Wang, Y., de Groot, C. H., Arbouet, A. & Muskens, O. L. Optimal Polarization Conversion in Coupled Dimer Plasmonic Nanoantennas for Metasurfaces. ACS Nano 8, 6390 (2014).
[86] Wang, L.-Y. et al. Circular differential scattering of single chiral self-assembled gold nanorod dimers. ACS Photonics 2, 1602 (2015).
[87] Fang, Z. et al. Plasmonic Coupling of Bow Tie Antennas with Ag Nanowire. Nano Lett. 11, 1676 (2011).
[88] Kollmann, H. et al. Toward plasmonics with nanometer precision: nonlinear optics of helium-ion milled gold nanoantennas. Nano Lett. 14, 4778 (2014).
[89] Nazir, A. et al. Fano coil-type resonance for magnetic hot-spot generation. Nano Lett. 14, 3166 (2014).
[90] Aouani, H., Rahmani, M., Navarro-Cía, M. & Maier, S. A. Third-harmonic-upconversion enhancement from a single semiconductor nanoparticle coupled to a plasmonic antenna. Nature Nanotech 9, 290 (2014).
[91] Kaniber, M. et al. Surface plasmon resonance spectroscopy of single bowtie nano-antennas using a differential reflectivity method. Sci Rep 6, 23203 (2016).
[92] Wang, X. et al. Polymer-encapsulated gold-nanoparticle dimers: facile preparation and catalytical application in guided growth of dimeric ZnO-nanowires. Nano Lett. 8, 2643 (2008).
[93] Urban, A. S. et al. Three-dimensional plasmonic nanoclusters. Nano Lett. 13, 4399 (2013).
[94] Prodan, E. A Hybridization model for the plasmon response of complex nanostructures. Science 302, 419 (2003).
[95] Prodan, E. & Nordlander, P. Plasmon hybridization in spherical nanoparticles. The Journal of Chemical Physics 120, 5444 (2004).
[96] Brandl, D. W., Mirin, N. A. & Nordlander, P. Plasmon modes of nanosphere trimers and quadrumers. J. Phys. Chem. B 110, 12302 (2006).
[97] Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 5 (2010).
[98] van Dijk, M. A. et al. Absorption and scattering microscopy of single metal nanoparticles. Phys. Chem. Chem. Phys. 8, 3486 (2006).
[99] Tseng, T.-Y., Lai, P.-J. & Sung, K.-B. High-throughput detection of immobilized plasmonic nanoparticles by a hyperspectral imaging system based on Fourier transform spectrometry. Opt. Express 19, 1291 (2011).
[100] Byers, C. P. et al. Single-particle spectroscopy reveals heterogeneity in electrochemical tuning of the localized surface plasmon. J. Phys. Chem. B 118, 14047 (2014).
[101] Giannini, V., Fernández-Domínguez, A. I., Heck, S. C. & Maier, S. A. Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. Chem. Rev. 111, 3888 (2011).
[102] Li, M., Cushing, S. K. & Wu, N. Plasmon-enhanced optical sensors: a review. Analyst 140, 386 (2015).
[103] Jiang, N., Zhuo, X. & Wang, J. Active plasmonics: principles, structures, and applications. Chem. Rev. 118, 3054 (2018).
[104] Awada, C., Barbillon, G., Charra, F., Douillard, L. & Greffet, J.-J. Experimental study of hot spots in gold/glass nanocomposite films by photoemission electron microscopy. Phys. Rev. B 85, 045438 (2012).
[105] Hövel, M., Gompf, B. & Dressel, M. Dielectric properties of ultrathin metal films around the percolation threshold. Phys. Rev. B 81, 035402 (2010).
[106] Ding, S., Wang, X., Chen, D. & Wang, Q. Optical percolation and nonlinearity of sputtered Ag island films. Opt. Express 14, 1541 (2006).
[107] Chen, P. & Liedberg, B. Curvature of the Localized Surface Plasmon Resonance Peak. Anal. Chem. 86, 7399 (2014).
[108] Bingham, J. M., Anker, J. N., Kreno, L. E. & Van Duyne, R. P. Gas Sensing with High-Resolution Localized Surface Plasmon Resonance Spectroscopy. J. Am. Chem. Soc. 132, 17358 (2010).
[109] Piliarik, M., Kvasnička, P., Galler, N., Krenn, J. R. & Homola, J. Local refractive index sensitivity of plasmonic nanoparticles. Opt. Express 19, 9213 (2011).
[110] Cheng, X. et al. Color Difference Amplification between Gold Nanoparticles in Colorimetric Analysis with Actively Controlled Multiband Illumination. Anal. Chem. 86, 7584 (2014).
[111] Mekonnen, A., Pakizeh, T., Zubritskaya, I., Jönsson, G. E. & Dmitriev, A. Chiral light by symmetric optical antennas. https://arxiv.org/abs/1412.3618, (accessed July 2019).
[112] Sheikholeslami, S. N., García-Etxarri, A. & Dionne, J. A. Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett. 11, 3927 (2011).
[113] Hopkins, B., Liu, W., Miroshnichenko, A. E. & Kivshar, Y. S. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters. Nanoscale 5, 6395 (2013).
[114] Li, Z., Shegai, T., Haran, G. & Xu, H. Multiple-particle nanoantennas for enormous enhancement and polarization control of light emission. ACS Nano 3, 637 (2009).
[115] Chuntonov, L. & Haran, G. Effect of symmetry breaking on the mode structure of trimeric plasmonic molecules. J. Phys. Chem. C 115, 19488 (2011).
[116] Chuntonov, L. & Haran, G. Trimeric plasmonic molecules: The role of symmetry. Nano Lett. 11, 2440 (2011).
[117] Tang, Y. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).
[118] Snatzke, G. Circular dichroism and optical rotatory dispersion— principles and application to the investigation of the stereochemistry of natural products. Angew. Chem. Int. Ed. Engl. 7, 14 (1968).
[119] Rhee, H. et al. Femtosecond characterization of vibrational optical activity of chiral molecules. Nature 458, 310 (2009).
[120] Rhee, H., Eom, I., Ahn, S.-H. & Cho, M. Coherent electric field characterization of molecular chirality in the time domain. Chem. Soc. Rev. 41, 4457 (2012).
[121] Engel, J., Liehl, E. & Sorg, C. Circular dichroism, optical rotatory dispersion and helix coil transition of polytyrosine and tyrosine peptides in non-aqueous solvents. Eur J Biochem 21, 22 (1971).
[122] Nuckolls, C. et al. Circular dichroism and UV−Visible absorption spectra of the Langmuir−Blodgett films of an aggregating helicene. J. Am. Chem. Soc. 120, 8656 (1998).
[123] Kelly, S. & Price, N. The use of circular dichroism in the investigation of protein structure and function. CPPS 1, 349 (2000).
[124] Kelly, S. M., Jess, T. J. & Price, N. C. How to study proteins by circular dichroism. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1751, 119 (2005).
[125] Govorov, A. O., Fan, Z., Hernandez, P., Slocik, J. M. & Naik, R. R. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett. 10, 1374 (2010).
[126] Govorov, A. O. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals. application to various geometries. J. Phys. Chem. C 115, 7914 (2011).
[127] Poulikakos, L. V. et al. Optical chirality flux as a useful far-field probe of chiral near fields. ACS Photonics 3, 1619 (2016).
[128] Hu, L., Xi, F., Qv, L. & Fang, Y. Searching the theoretical ultimate limits of probing surface-enhanced Raman optical activity. ACS Omega 3, 1170 (2018).
第2章
[129] Drude, P. Zur Elektronentheorie der Metalle. Ann. Phys. 306, 566 (1900).
[130] Mageto, M. J., Maghanga, C. M. & Mwamburi, M. The lorentz oscillator model simulation illustrating a broad maximum in the bulk reflectance for frequencies. African Review of Physics 7, 95 (2012).
[131] Rakić, A. D., Djurišić, A. B., Elazar, J. M. & Majewski, M. L. Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998).
[132] Johnson, P. B. & Christy, R. W. Optical Constants of the Noble Metals. Phys. Rev. B 6, 4370 (1972).
第3章
[133] Saberi, A. A. Recent advances in percolation theory and its applications. Physics Reports 578, 1 (2015).
[134] Jung, Y., Chen, H., Tong, L. & Cheng, J.-X. Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing. J. Phys. Chem. C 113, 2657 (2009).
[135] Thompson, R. E., Larson, D. R. & Webb, W. W. Precise Nanometer localization analysis for individual fluorescent probes. Biophysical Journal 82, 2775 (2002).
[136] Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3, 793 (2006).
[137] Babcock, H., Sigal, Y. M. & Zhuang, X. A high-density 3D localization algorithm for stochastic optical reconstruction microscopy. Opt Nanoscopy 1, 6 (2012).
[138] Mukamel, E. A., Babcock, H. & Zhuang, X. Statistical deconvolution for superresolution fluorescence microscopy. Biophysical Journal 102, 2391 (2012).
第4章
[139] Lord Rayleigh (Strutt, J., W.) On the transmission of light through an atmosphere containing small particles in suspension, and on the origin of the blue of the sky. Phil. Mag. 47, 375 (1899).
[140] Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377 (1908).
[141] Xu, Y., L. & Gustafson, B., Å. S. A generalized multiparticle Mie-solution: further experimental verification. J. Quant. Spectrosc. Radiat. Transf. 70, 395 (2001).
[142] Ringler, M. Plasmonische Nahfeldresonatoren aus zwei biokonjugierten Goldnanopartikeln, PhD thesis, LMU München, (2008).
[143] Stein, S. Addition theorems for spherical wave functions. Quart. Appl. Math. 19, 15 (1961).
[144] García-Cámara, B. On light scattering by nanoparticles with conventional and non-conventional optical properties, PhD thesis, Universidad de Cantabria, 29 (2010).
[145] Wang, L., V. & Wu, H. I. Rayleigh theory and Mie theory for a single scatterer. In Biomedical Optics 17 (John Wiley & Sons, Inc., 2012).
[146] Gislén, L. Mie theory. http://home.thep.lu.se/~larsg/Site/MieTheory.pdf, (accessed July 2019).
[147] Rahmani, M. et al. Beyond the hybridization effects in plasmonic nanoclusters: diffraction-induced enhanced absorption and scattering. Small 10, 576 (2014).
[148] Zohar, N., Chuntonov, L. & Haran, G. The simplest plasmonic molecules: Metal nanoparticle dimers and trimers. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 21, 26 (2014).
[149] Stella, L., Zhang, P., García-Vidal, F. J., Rubio, A. & García-González, P. Performance of nonlocal optics when applied to plasmonic nanostructures. J. Phys. Chem. C 117, 8941 (2013).
[150] Varas, A., García-González, P., Feist, J., García-Vidal, F. J. & Rubio, A. Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics 5, (2016).
[151] Cheng, D. K. Field and wave electromagnetics, 2th ed. (Addison-Wesley, 1989).
第5章
[152] Hunt, R., W., G. & Pointer, M., R. Measuring Colour, 4th ed. (Wiley, 2011).
[153] Brown, W. R. J. & MacAdam, D. L. Visual sensitivities to combined chromaticity and luminance differences. J. Opt. Soc. Am. 39, 808 (1949).
[154] Tian, X., Fang, Y. & Sun, M. Formation of enhanced uniform chiral fields in symmetric dimer nanostructures. Sci Rep 5, 17534 (2015).
附錄
[155] West, B. R. Ion-exchanged glass waveguide technology: a review. Opt. Eng 50, 071107 (2011).
[156] Lupascu, A. Modeling ion exchange in glass with concentration‐dependent diffusion coefficients and mobilities. Opt. Eng 35, 1603 (1996).
[157] Abouelleil, M. M. Ion exchange in glasses and crystals. Annu. Rev. Mater. Sci. 23, 255 (1993).
[158] Yang, X., Li, W., Li, Z., Wei, Y. & Huang, W. Depth profiles of Ag nanoparticles in silicate glass. Appl. Phys. A 90, 465 (2008).
[159] Suszy, M., Morawska-Kowal, T. & Krajczyk, L. Optical properties of small silver particles embedded in soda-lime silica glasses. Opt. Appl. 40, 397 (2010).
[160] Podlipensky, A., Abdolvand, A., Seifert, G. & Graener, H. Femtosecond laser assisted production of dichroitic 3D structures in composite glass containing Ag nanoparticles. Appl. Phys. A 80, 1647 (2005).
[161] Stalmashonak, A., Akin Unal, A., Seifert, G. & Graener, H. Optimization of dichroism in laser-induced transformation of silver nanoparticles in glass. Proc. SPIE 7033, 70331Z (2008).
[162] Tyrk, M. A., Gillespie, W. A., Seifert, G. & Abdolvand, A. Picosecond pulsed laser induced optical dichroism in glass with embedded metallic nanoparticles. Opt. Express 21, 21823 (2013).
[163] Vogt, M. R. et al. Measurement of the optical constants of soda-lime glasses in dependence of iron content and modeling of iron-related power losses in crystalline Si solar cell modules. IEEE J. Photovoltaics 6, 111 (2016).
[164] Thiel, C. W. Four-wave mixing and its applications. http://staff.mbi-berlin.de/bfreyer/fwmixing.pdf, (accessed July 2019).
[165] Palomba, S. & Novotny, L. Nonlinear excitation of surface plasmon polaritons by four-wave mixing. Phys. Rev. Lett. 101, 056802 (2008).
[166] Renger, J., Quidant, R., van Hulst, N., Palomba, S. & Novotny, L. Free-space excitation of propagating surface plasmon polaritons by nonlinear four-wave mixing. Phys. Rev. Lett. 103, 266802 (2009).
[167] Renger, J., Quidant, R., van Hulst, N. & Novotny, L. Surface-enhanced nonlinear four-wave mixing. Phys. Rev. Lett. 104, 046803 (2010).
[168] Renger, J., Quidant, R. & Novotny, L. Enhanced nonlinear response from metal surfaces. Opt. Express 19, 1777 (2011).
[169] Palomba, S. et al. Nonlinear plasmonics at planar metal surfaces. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 369, 3497 (2011).
[170] Palomba, S. et al. Optical negative refraction by four-wave mixing in thin metallic nanostructures. Nature Mater 11, 34 (2012).
[171] Jung, Y., Tong, L., Tanaudommongkon, A., Cheng, J.-X. & Yang, C. In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett. 9, 2440 (2009).
[172] Mahou, P. et al. Combined third-harmonic generation and four-wave mixing microscopy of tissues and embryos. Biomed. Opt. Express 2, 2837 (2011).
[173] Newport APPLICATION NOTE Supercontinuum generation in SCG-800 photonic crystal fiber. https://www.newport.com/medias/sys_master/images/images/ha8/ha9/8797285449758/Supercontinuum-Generation-in-SCG-800-App-Note-28.pdf, (accessed July 2019).
[174] CIE. (n.d.). CIE 15:2004 Tables Data. https://law.resource.org/pub/us/cfr/ibr/003/cie.15.2004.tables.xls, (accessed July 2019).
[175] Westland, S. Computational colour science using MATLAB 2e. https://www.mathworks.com/matlabcentral/fileexchange/40640-computational-colour-science-using-matlab-2e, (accessed July 2019).
[176] Poynton, C. A. Digital video and HD: algorithms and interfaces. (Morgan Kaufmann, 2012).
[177] Ohno, Y. & Blattner, P. Chromaticity difference specification for light sources. http://files.cie.co.at/738_CIE_TN_001-2014.pdf, (accessed July 2019).
[178] Sappi etc. Defining and communicating color: The CIELAB system. https://cdn-s3.sappi.com/s3fs-public/sappietc/Defining%20and%20Communicating%20Color.pdf, (accessed July 2019).
[179] Company 235, LLC. CIE chromaticity explorer. http://company235.com/tools/colour/cie.html, (accessed July 2019).
[180] Wen, S. A color difference metric based on the chromaticity discrimination ellipses. Opt. Express 20, 26441 (2012).
[181] Stokes, M., Anderson, M., Chandrasekar, S. & Motta, R. A standard default color space for the internet –sRGB, Ver. 1.10, 1996. https://www.w3.org/Graphics/Color/sRGB.html, (accessed July 2019).
[182] Berry, M. V. & Jeffrey, M. R. Conical diffraction: Hamilton’s diabolical point at the heart of crystal optics. Progress in Optics 50, 13 (2007).
[183] Berry, M. V. Conical diffraction asymptotics: fine structure of Poggendorff rings and axial spike. J. Opt. A: Pure Appl. Opt. 6, 289 (2004).
[184] Berry, M. V., Jeffrey, M. R. & Lunney, J. G. Conical diffraction: observations and theory. Proceedings: Mathematical, Physical and Engineering Sciences 462, 1629 (2006).
[185] Peinado, A. et al. Conical refraction as a tool for polarization metrology. Opt. Lett. 38, 4100 (2013).
[186] Young, D. Hough transform for circles. https://www.mathworks.com/matlabcentral/fileexchange/26978-hough-transform-for-circles, (accessed July 2019).
[187] Bowlan, P. et al. Crossed-beam spectral interferometry: a simple, high-spectral-resolution method for completely characterizing complex ultrashort pulses in real time. Opt. Express 14, 11892 (2006).
[188] Walmsley, I. A. & Dorrer, C. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photon. 1, 308 (2009).
[189] Takeda, M., Ina, H. & Kobayashi, S. Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156 (1982).
[190] Lim, S.-H., Caster, A. G. & Leone, S. R. Fourier transform spectral interferometric coherent anti-Stokes Raman scattering (FTSI-CARS) spectroscopy. Opt. Lett. 32, 1332 (2007). |