博碩士論文 105256009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:18.226.87.165
姓名 王思茜(Szu-Chien Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 非等向性平板波導結構 之OLED的量測
(Measurement of OLEDs with Anisotropic Slab Waveguide Structures)
相關論文
★ 以膠體微影技術應用於開孔電極垂直式有機電晶體之研究★ 有機高分子電化學發光元件
★ 開孔電極結構對於垂直式有機電晶體電性影響之研究★ 微米光柵壓印有機太陽能電池主動層之研究
★ 有機波導結構的ASE現象研究以及共振腔結構的模擬★ 利用金屬微共振腔研究光與有機激發態強耦合現象
★ 多層式雙極有機場效電晶體之研究★ 電光非週期性晶疇極化反轉鈮酸鋰波導定向耦合元件之研究
★ 全氟己基四聯?吩共軛分子奈米結構成長與其對薄膜電晶體電性影響之研究★ 有機染料分子薄膜之光電特性研究
★ 多層結構有機電晶體之研究★ 利用氧流量調整改善短通道氧化物半導體在高電場下的電流崩潰現象
★ 有機強耦合共振腔元件設計與發光量測系統架設之研究★ 強耦合有機微共振腔之設計與研究
★ 光激發有機極化子元件之製作與量測★ 即時多角度量測光譜儀系統應用於有機發光二極體空間頻譜之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文利用有機小分子螢光材料BSB-Cz(4,4’-bis[(N-carbazole) styryl] biphenyl)高折射率且雙軸特性的為發光層材料匹配低折射率PVK(Poly(9-vinylcarbazole))製作非等向性平板波導之OLED元件。我們參考前研究已優化之PVK 厚度及BSB-Cz 厚度,在此使用100 nm 的 PVK 有較佳的光電特性表現及270 nm的BSB-Cz,此為光增益係數最高之波段。我們鍍製不同電子注入層分析其光電特性、EL(電致發光)及PL(光致發光)頻譜之差異。我們得到MoO3與Li2CO3 的組合比PEDOT:PSS與LiF的組合能夠有效降低元件之開路電壓,約從35V下降至25V,雖然整體外部量子效應(EQE%)的結果差不多,但在相同電壓(40V)下MoO3與Li2CO3 的組合在光強與電流的表現較佳。我們也透過空間頻譜量測觀察到這種波導式的OLED有非等向性的光譜分布,觀察到隨著高角度有些微藍移的趨勢。
我們進一步觀察元件內部之等效折射率及波導模態的光場分佈,方法是利用玻璃基板與BSB-Cz中間插入PVK,利用PVK的厚度(0、50、100、150與200 nm)變化來觀察等效折射率之變化,我們發現在100 nm以上之PVK會減少玻璃基板對PVK以下整體等效折射率的影響,使PVK以下整體的等效折射率從1.46提升至1.67越為接近PVK本身之折射率(1.6 ~ 1.7),且發現PVK 的厚度改變可以改變波導模態的光場分布。接著,我們再利用此論文所使用之元件結構觀察波導模態的光場分布,我們製備此元件(玻璃基板/ITO/MoO3/PVK/BSB-Cz)並蓋上四種不同上介質(Air;Ag; LiF/ Ag ;Li2CO3/ Ag),侷限因子從 86.05% 提升至90.81%,可以觀察到Li2CO3/ Ag能顯著的改善讓光子侷限在有機層裡面,使得發光效能更為優化。
摘要(英) In this thesis, the high refractive index and biaxial properties of the organic small molecule fluorescent material BSB-Cz (4,4′-bis[(N-carbazole) styryl] biphenyl) are used to match the low refractive index PVK (Poly (9) -vinylcarbazole)) An OLED element for making an anisotropic slab waveguide. We refer to the optimized PVK thickness and BSB-Cz thickness of the previous study. Here, the 100 nm PVK has better photoelectric characteristics and 270 nm BSB-Cz, which is the band with the highest optical gain coefficient. We plated different electron injection layers to analyze the differences in their photoelectric properties, EL (electroluminescence) and PL (photoluminescence) spectra. We get a combination of MoO3 and Li2CO3 than PEDOT: PSS and LiF can effectively reduce the open circuit voltage of the component, which is reduced from 35V to 25V, although the overall external quantum effect (EQE%) results almost the same, but at the same voltage (40V) The combination of MoO3 and Li2CO3 performs better in light intensity and current. We also observed the non-isotropic spectral distribution of this waveguide-type OLED through spatial spectrum measurement, and observed a slight blue-shift trend with high angle.
We further observed the equivalent refractive index inside the component and the optical field distribution of the waveguide mode by inserting PVK between the glass substrate and BSB-Cz, using the thickness of PVK (0, 50, 100, 150 and 200 nm). Observing the change of the equivalent refractive index, we found that PVK above 100 nm will reduce the effect of the glass substrate on the overall equivalent refractive index below PVK, so that the overall equivalent refractive index below PVK is raised from 1.46 to 1.67, which is closer to PVK itself. The refractive index (1.6 ~ 1.7), and found that the thickness of the PVK changes can change the light field distribution of the waveguide mode. Next, we use the component structure used in this paper to observe the light field distribution of the waveguide mode. We prepare this component (glass substrate/ITO/MoO3/PVK/BSB-Cz) and cover it with four different upper media (Air; Ag; LiF/Ag; Li2CO3/Ag), the localization factor increased from 86.05% to 90.81%. It can be observed that Li2CO3/Ag can significantly improve the photon confinement in the organic layer, which makes the luminous efficiency more optimized.
關鍵字(中) ★ 非等向性平板波導結構 關鍵字(英) ★ Anisotropic Slab Waveguide Structures
論文目次 摘要 I
Abstract II
致謝 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
第二章 基本理論與計算 5
2-1 有機發光二極體之架構 5
2-2 有機發光二極體之載子注入與傳輸 6
2-3 有機雷射 10
2-3-1 增益介質 10
2-3-2 共振腔 17
2-3-3 激發源 21
2-4-1 三層平板波導基礎理論 25
2-4-2 傳遞矩陣解多層波導之模態 33
2-4-3 截止波長 37
2-5 數據分析與計算 40
2-5-1量子效率計算 40
第三章 實驗方法與架構 41
3-1 實驗製程 41
3-1-1 元件製作所使用之儀器 42
3-1-2儀器原理簡介 42
3-2元件結構 45
3-3 元件製作流程 51
3-3-1 ITO 透明導電薄膜的清洗及後處理 51
3-3-2塗佈製程 52
3-3-3熱蒸鍍製程 52
3-4實驗量測 54
3-4-1半導體參數分析儀 54
3-4-2 光纖量測系統 55
第四章 結果與討論 58
4-1 不同電子注入層LiF及 Li2CO3之光電特性分析 58
4-2 不同電子注入層 LiF及 Li2CO3之空間頻譜分析 60
4-3 PVK厚度變化對BSB-Cz的光場分佈之影響 63
4-4 比較不同電極對電場分佈之影響 68
第五章 結論與未來展望 73
參考文獻 75
參考文獻 [1] 陳柏廷,「有機波導結構的 ASE 現象研究 以及共振腔結構的模擬」,國立中央大學,碩士論文,民國102年
[2] 黃裕軒,「有機平板波導元件電激發光特性之研究」,國立中央大學,碩士論文,民國103年
[3]J. S. Park, H. Chae, H. K. Chung and S. I. Lee, Semicond. Sci. Technol. 26, 034001 (2011).
[4] A. Sugimoto, H. Ochi, S. Fujimura, A. Yoshida, T. Miyadera, and M. Tsuchida, IEEE J. Sel. Top. Quant. Electron 10, 1, (2004).
[5] C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000).
[6] B. Stender, S. F. Völker, C. Lambert, and J. Pflaum, Adv. Mater. 25, 2943-2947 (2013).
[7] K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233-1271 (2007).
[8] Y. Seino, H. Sasabe, Y. J. Pu, and J. Kido, Adv. Mater. 26, 1612–1616 (2014).
[9] L. Li, J. Liu, Z. Yu, and Q. Pei, Appl. Phys. Lett. 98, 201110 (2011).
[10] Z. Y. Liu, S. R. Tseng, Y. C. Chao, C. Y. Chen, H. F. Meng, S. F. Horng, Y. H. Wu, S. H. Chen, Synthetic Metals 161, 426–430 (2011).
[11] S. Sax, N. Rugen-Penkalla, A. Neuhold, S. Schuh, E. Zojer, E. J. W. List, and K. Mullen, Adv. Mater. 22, 2087–2091 (2010).
[12] E. Ahmed , T. Earmme , and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889–3899 (2011).
[13] T. Ye, S. Shao, J. Chen, L. Wang, and D. Ma, ACS Appl. Mater. Interfaces 3, 410–416 (2011).
[14] G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese, and C. A. Grimes, Appl. Phys. Lett. 91, 152111 (2007).
[15] J. Jang, S. H. Han, CURR APPL PHYS 6S1, e17–e21 (2006).
[16] Q. Wang , Y. Tao ,X. Qiao , J. Chen , D. Ma , C. Yang , and J. Qin, Adv. Funct. Mater. 21, 1681–1686 (2011).
[17] S. Chenais and S. Forget, Polym Int 61, 390–406 (2012).
[18] L. M. Chen, Z. Xu, Z. Hong, and Y. Yang, J. Mater. Chem. 20, 2575–2598 (2010).
[19] T. Earmme and S. A. Jenekhe, J. Mater. Chem. 22, 4660 (2012).
[20] J. Kim, S. H. Lim, and Y. S. Kim, J. AM. CHEM. SOC. 132, 42 (2010).
[21] N. Tessler, Adv. Mater. 11, 5 (1999).
[22] M. Ikai and S. Tokito, Appl. Phys. Lett. 79, 2 (2001).
[23] A. Tsumura, H. Koezuka, and T. Ando,“Macromolecular electronic device: Field‐effect transistor with a polythiophene thin film,”Appl. Phys. Lett. 49, 1210 (1986)
[24] J. Zaumseil and H. Sirringhaus,“Electron and Ambipolar Transport in Organic Field-Effect Transistors,”Chem. Rev. 107(4), 1296-1323 (2007)
[25] P. Gorrn, T. Rabe, T. Riedl, W. Kowalsky, F. Galbrecht, and U. Scherf, Appl. Phys. Lett. 89, 161113 (2006).
[26] M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10 958 (2000).
[27] M. A. Baldo, R. J. Holmes, and S. R. Forrest, Phys. Rev. B. 66, 035321 (2002).
[28] A. Yariv and P. Yeh, “Optical Wave in Crystals” , Wiley Interscience publication (1984).
[29] J. Meyer, S. Hamwi, T. Bülow, H.-H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
[30] H. Lee, S.W. Cho, K. Han, P. E. Jeon, C. N. Whang, K. Jeong, K. Cho, and Y. Yi, Appl. Phys. Lett. 93, 043308 (2008).
[31] C. C. Chang, M. T. Hsieh, J. F. Chen, S. W. Hwang, and C. H. Chen, Appl. Phys. Lett. 89, 253504 (2006).
[32] T. Matsushima, Y. Kinoshita, and H. Murata, Appl. Phys. Lett. 91, 253504 (2007).
[33] H. You, Y. Dai, Z. Zhang, and D. Ma, Appl. Phys. Lett. 101, 026105 (2007).
[34] X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z.Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, J. Appl. Phys. 95, 3828 (2004).
[35] L. Hou, L. Duan, J. Qiao, W. Li, D. Zhang, and Y. Qiu, Appl. Phys. Lett. 92, 263301 (2008).
[36] J. Huang, T. Watanabe, K. Ueno, and Y. Yang, Adv. Mater. 19, 739–743 (2007).
[37] X. Zheng, Y. Wu, R. Sun, W. Zhu, X. Jiang, Z. Zhang, and S. Xu, Thin Solid Films 478, 252– 255 (2005).
[38] K. Morii, T. Kawase, and S. Inoue, Appl. Phys. Lett. 92, 213304 (2008).
[39] S. J. Su, T. Chiba, T. Takeda, and J. Kido, Adv. Mater 20, 2125–2130 (2008).
[40] S. H. Kim, J. Jang, and J. Y. Lee, Appl. Phys. Lett 90, 223505 (2007).
[41] R. N. Marks, et al, Synth. Met. 55, 4128-4133 (1993)
[42] I. D. Parker, et al, J. Appl. Phys. 75, 1656-1666 (1994)
[43] P. Vacca, M. Petrosino, A. Guerra, R. Chierchia, C. Minarini, D. D. Sala,and A. Rubino, J. Phys. Chem. C 111, 17404-17408 (2007).
[44] C.C. Yap , M. Yahaya , M.M. Salleh, CURR APPL PHYS 8, 637–644 (2008).
[45] G. G. Malliaras, J. R. Salem, P. J. Brock, and C. Scott, Phys. Rev. B. 58, 20 (1998).
[46] C. E. Small, S. W. Tsang, J. Kido, S. K. So, and F. So, Adv. Funct. Mater. 22, 3261–3266 (2012).
[47] P. C. Kao, J. Y. Wang, J. H. Lin, and C. H. Yang, Thin Solid Films 527, 338–343 (2013).
[48] E. Ahmed, T. Earmme, and S. A. Jenekhe, Adv. Funct. Mater. 21, 3889–3899 (2011).
[49] B. Hu, L. Yan, and M. Shao, Adv. Mater. 21, 1500–1516 (2009).
[50] I. D. W. Samuel and G. A. Turnbull, Chem. Rev. 107, 1272-1295 (2007).
[51] Richard S. Quimby, “Photonics and Lasers An Introduction”John Wiley and Sons, Inc. (2006)
[52] B. Zhang, Y. Hou, F. Teng, Z. Lou, X. Liu, and Y. Wang, Appl. Phys. Lett. 96, 103303 (2010).
[53] B. Zhang, Y. Hou, Z. Lou, F. Teng, X. Liu, L. Meng, J. Shen, and Y. Wang, Appl. Phys. Lett. 101, 153305 (2012).
[54] M. D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Dı´az-Garcı´a, and A. J. Heeger, Phys. Rev. B. 58, 11 (1998).
[55] V. G. Kozlov, V. Bulovic’ , P. E. Burrows, and S. R. Forrest, Nature 389, 362 (1997).
[56] B. H. Wallikewitz, G. O. Nikiforov, H. Sirringhaus, and R. H. Friend, Appl. Phys. Lett. 100, 173301 (2012).
[57] B. H. Wallikewitz, M. D. I. Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, Adv. Mater. 22, 531–534 (2010).
[58] M. H. Song, D. Kabra, B. Wenger, R. H. Friend, and H. J. Snaith, Adv. Funct. Mater. 19, 2130–2136 (2009).
[59] 李正中,”薄膜光學與鍍膜技術” 第七版, 藝軒圖書出版社.
[60] A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, Appl. Phys. Lett 91, 051124 (2007).
[61] C. J. Yang, S. H. Liu, H. H. Hsieh, C. C. Liu, T. Y. Cho, and C. C. Wu, Appl. Phys. Lett 91, 253508 (2007).
[62] J. Lee, N. Chopra, D. Bera, S. Maslov, S. H. Eom, Y. Zheng, P. Holloway, J. Xue, and F. So, Adv. Energy Mater. 1, 174-178 (2011).
[63] J. Mezyk, F. Meinardi, R. Tubino, and M. Cocchi, Appl. Phys. Lett. 93, 093301 (2008).
[64] Y. Setoguchi and C. Adachi, J. Appl. Phys. 108, 064516 (2010).
[65] H. Fukagawa, K. Watanabe, T. Tsuzuki, and S. Tokito, Appl. Phys. Lett. 93, 133312 (2008).
[66] Z. Ma, S. Zhou, S. Hu, J. Yu, Journal of Luminescence 154, 376–380 (2014).
[67] J. Wang, J. Liu, S. Huang, X. Wu, X. Shi, C. Chen, Z. Ye, J. Lu, Y. Su, G. He, and Y. Zheng, Organic Electronics 14, 2854–2858 (2013).
[68] C. Murawski , P. Liehm , K. Leo , and M. C. Gather, Adv. Funct. Mater. 24, 1117–1124 (2014).
[69] M. Inoue, K. Goushi, K. Endo, H. Nomur, and C. Adachi, Journal of Luminescence 143, 754–758 (2013).
[70] Eugene Hecht,“Optics,”Addison-Wesley, 4th ed. (2002)
[71] C. R. Pollock, and M. Lipson,“Integrated Photonics’’,Kluwer Academic Publishers (2003).
[72] 盧廷昌、王興宗,“半導體雷射技術”, 五南出版社 (2010)
[73] D. Yokoyama, M. Moriwake, and C. Adachi, J. Appl. Phys. 103, 123104 (2008).
[74] M. Pauchard, M. Vehse, J. Swensen, D. Moses, and A. J. Heeger, Appl. Phys. Lett. 83, 22 (2003).
[75] L. M. Blinov, G. Cipparrone, and P. Pagliusi, Appl. Phys. Lett. 89, 031114 (2006).
[76] A. Yariv and P. Yeh, “Optical Wave in Crystals”, Wiley Interscience publication (1984).
[77] J. F. Chang, M. C. Gwinner, M. Caironi, T. Sakanoue, and H. Sirringhaus, Adv. Funct. Mater. 20, 2825–2832 (2010).
[78] H. W. Lu, H. L. Weng, P. C. Kao, S. Y. Chu, and Y. D. Juangd, ECS Journal of Solid State Science and Technology, 5 (6) R104-R109 (2016)
指導教授 張瑞芬 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明