博碩士論文 91523048 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:153 、訪客IP:18.191.240.243
姓名 劉偉正(Wei-Cheng Liu)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 應用於ISM與Ka頻段之射頻收發機前端電路研製
(Implementation of RF Transceiver Front-End Circuits for ISM and Ka Band Applications)
相關論文
★ 應用於筆記型電腦數位電視單極天線之研製★ 應用於數位機上盒與纜線數據機之電纜多媒體傳輸標準多工濾波器
★ 印刷共面波導饋入式多頻帶與超寬頻天線設計★ 微波存取全球互通頻段前向匯入式功率放大器與高效率Class F類功率放大器暨壓控振盪器電路之研製
★ 應用於矽基功率放大器與混頻器之傳輸線型變壓器研究★ 應用於V-頻段射頻收發機前端電路之低功耗源極注入式混頻器之研製
★ 應用積體電路上方後製程與整合被動元件於互補式金氧半導體製程之系統封裝研究★ 應用fT-倍頻電路架構於毫米波壓控振盪器與注入鎖定除頻器之研製
★ 應用傳輸線型變壓器於X/K–Ka/V頻段全積體整合之寬頻互補式金氧半導體功率放大器研製★ 應用於K / V 頻段低功耗混頻器之研製
★ 應用於K/V頻段之低功耗CMOS低雜訊放大器之研究★ 應用於5-GHz CMOS射頻前端電路之低電壓自偏壓式混頻器與高線性化功率放大器之研製
★ 應用於 K 頻段射頻接收機之寬頻低功耗 CMOS 低雜訊放大器之研製★ 應用磁耦合變壓器於K頻段之低功耗互補式金氧半導體壓控振盪器研製
★ 應用於K頻段之單向化全積體整合功率放大器與應用於V頻段之寬頻功率放大器研製★ 應用於C/X頻段全積體整合之互補式金氧半導體寬頻低功耗降頻器與寬頻功率混頻器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著網際網路深入家庭,以及影音多媒體服務逐漸普及,消費市場對於網路頻寬的要求與日俱增。而手持式產品的流行,更推動了網路設備朝向無線領域發展的趨勢。射頻電路設計便是無線通訊中的一個關鍵技術,低雜訊放大器(low noise amplifier)、混頻器(mixer)、功率放大器(power amplifier)與壓控振盪器(voltage-controlled oscillator)都是其中的重要元件,這領域是一個非常具有發展性的研究主題。
本論文主要研究內容為射頻前端積體電路設計,電路應用的系統為ISM頻段的無線區域網路(wireless local area networks),以及Ka頻段的區域多點分散式服務系統(local multipoint distribution service)。其中,ISM頻段的電路以TSMC 0.35μm SiGe HBT製程與GCT 2.0μm GaAs HBT研製,包含可變增益低雜訊放大器(variable gain low noise amplifier)、次諧波混頻器(sub-harmonic mixer)、線性功率放大器(linear power amplifier)與壓控振盪器設計。Ka頻段的電路則是以WIN 0.15μm pHEMT製程研製,包含低雜訊放大器、次諧波混頻器、推動放大器(driver amplifier)與功率放大器設計。
ISM頻段電路經量測,可變增益低雜訊放大器的增益為19 dB,輸入1 dB壓縮點(1 dB compression point)為-23 dBm,雜訊指數(noise figure)為2.7 dB,增益控制範圍為7.2 dB;次諧波混頻器的轉換增益(conversion gain)為2.9 dB,輸入1 dB壓縮點為-7.4 dBm,訊號隔離度(signal isolation)大於30 dB;線性功率放大器的增益為18.3 dB,輸出1 dB壓縮點為23.2 dBm,附加功率效率(power added efficiency)為29.6 %;壓控振盪器的相位雜訊(phase noise)為-90.9 dBc/Hz,輸出功率為-7 dBm,可調頻率範圍為635 MHz。
Ka頻段電路經量測,低雜訊放大器的增益為24.8 dB,輸入1 dB壓縮點為-20 dBm,雜訊指數為3.1 dB;次諧波混頻器的轉換損耗(conversion loss)為10.5 dB,輸入1 dB壓縮點為9 dBm,訊號隔離度大於30 dB;推動放大器的增益為20.4 dB,輸出1 dB壓縮點為17 dBm,附加功率效率為29.4 %;功率放大器的增益為24.4 dB,輸出1 dB壓縮點為20.9 dBm,附加功率效率為20.8 %。
摘要(英) Due to internet is getting to go deep into households and multi-media services are getting popular, consumption market is demanding much fast internet speed. RF circuit design is one of the key technologies of the wireless communication systems. Low noise amplifiers, mixers, power amplifiers and voltage-controlled oscillators are key components. This field is a very promising research theme.
RF front-end integrated circuit design is the main research point of this paper, which apply to ISM band wireless local area network and Ka band local multipoint distribution service. Among above, ISM band circuit is implemented with TSMC 0.35μm SiGe HBT and GCT 2.0μm GaAs HBT processes, including variable gain low noise amplifier, sub-harmonic mixer, linear power amplifier and voltage-controlled oscillator designs; while Ka band circuit is implemented with WIN 0.15μm pHEMT , comprising low noise amplifier, sub-harmonic mixer, driver amplifier and power amplifier designs.
The measurement results of the ISM band circuit are as follows; for the variable gain LNA , gain is 19 dB, input power at the 1-dB gain compression point is -23 dBm, noise figure is 2.7dB, gain control range is 7.2 dB; for the sub-harmonic mixer, conversion gain is 2.9dB, input power at the 1-dB gain compression point is -7.4 dBm, signal isolation is greater than 30dB; for the linear power amplifier , gain is 18.3 dB, output power at the 1-dB gain impression point is 23.2dBm, power added efficiency is 29.6%; for the voltage-controlled oscillator , phase noise is -90.9 dBc/Hz, output power is -7 dBm, tuning range is 635 MHz .
The measurement results of the Ka band circuit are as follows; for the LNA , gain is 24.8 dB, input power at the 1-dB gain compression point is -20 dBm, noise figure is 3.1 dB; for the sub-harmonic mixer, conversion loss is 10.5 dB, input power at the 1-dB gain compression point is 9 dBm, signal isolation is greater than 30dB; for the driver amplifier , gain is 20.4 dB, output power at the 1-dB gain impression point is 17 dBm, power added efficiency is 29.4%; for the power amplifier , gain is 24.4 dB, output power at the 1-dB gain impression point is 20.9 dBm, power added efficiency is 20.8%.
關鍵字(中) ★ 線性功率放大器
★ 壓控振盪器
★ 次諧波混頻器
★ 低雜訊放大器
關鍵字(英) ★ linear power amplifier
★ low noise amplifier
★ sub-harmonic mixer
★ voltage-controlled oscillator
論文目次 第一章 緒論
1-1 研究動機 1
1-2 研究成果 2
1-3 章節概述 2
第二章 射頻收發機架構及系統考量
2-1 接收機架構 4
2-1-1 超外差式接收機 4
2-1-2 直接降頻式接收機 5
2-1-3 鏡像頻率抑制接收機 6
2-1-4 數位中頻接收機 8
2-2 接收機系統考量 9
2-2-1 雜訊指數 11
2-2-2 動態範圍 13
2-2-3 交互調變 15
2-3 發射機架構 18
2-3-1 直接升頻式發射機 18
2-3-2 二階升頻式發射機 20
2-4 發射機系統考量 21
2-4-1 發射機雜訊 22
2-4-2 鄰近通道功率比 24
第三章 2.4 GHz頻段射頻前端電路設計
3-1 802.11無線區域網路簡介 25
3-2 0.35μm SiGe HBT製程技術簡介 26
3-3 2.4 GHz可變增益低雜訊放大器 29
3-3-1 可變增益低雜訊放大器介紹 29
3-3-2 電路架構與原理 32
3-3-3 設計流程 34
3-3-4 量測結果 35
3-3-5 結果討論 44
3-4 2.4 GHz次諧波混頻器 45
3-4-1 次諧波混頻器介紹 45
3-4-2 電路架構與原理 47
3-4-3 設計流程 50
3-4-4 量測結果 51
3-4-5 結果討論 58
第四章 5.8 GHz頻段射頻前端電路設計
4-1 2.0μm GaAs HBT製程技術簡介 60
4-2 5.8 GHz線性功率放大器 63
4-2-1 線性功率放大器介紹 63
4-2-2 電路架構與原理 67
4-2-3 設計流程 69
4-2-4 量測結果 70
4-2-5 結果討論 74
4-3 5.5 GHz壓控振盪器 74
4-3-1 壓控振盪器介紹 74
4-3-2 電路架構與原理 79
4-3-3 設計流程 81
4-3-4 量測結果 83
4-3-5 結果討論 88
第五章 Ka頻段射頻前端電路設計
5-1 區域多點分散式服務系統簡介 90
5-2 0.15μm GaAs pHEMT製程技術簡介 91
5-3 28GHz低雜訊放大器 94
5-3-1 雜訊指數量測介紹 94
5-3-2 電路架構與原理 96
5-3-3 設計流程 97
5-3-4 量測結果 99
5-3-5 結果討論 102
5-4 28GHz電阻性次諧波混波器 103
5-4-1 電阻性混頻器介紹 103
5-4-2 電路架構與原理 106
5-4-3 設計流程 107
5-4-4 量測結果 108
5-4-5 結果討論 113
5-5 31 GHz 放大器 114
5-5-1 穩定度分析 114
5-5-2 電路架構與原理 119
5-5-3 設計流程 120
5-5-4 量測結果 123
5-5-5 結果討論 130
第六章 結論 131
參考文獻 132
參考文獻 [1] Razavi, B.,” RF IC design challenges,” Design Automation Conference, 1998. Proceedings , 15-19 June 1998
[2] Razavi, B.,” RF microelectronics,” Prentice Hall, 1998
[3] Razavi, B.,” Design considerations for direct-conversion receivers,” Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on , Volume: 44 Issue: 6 , June 1997
[4] Abidi, A.A.,” Direct-conversion radio transceivers for digital communications,” Solid-State Circuits, IEEE Journal of , Volume: 30 Issue: 12 , Dec. 1995
[5] Kai Chang, Inder Bahl, Vijay Nair, “RF and Microwave Circuit and Component Design for Wireless Systems,” John Wiley, New York, December 2001
[6] Ken Leong Fong, “Dual-band high-linearity variable-gain low-noise amplifiers for wireless applications,” Solid-State Circuits Conference, 1999. Digest of Technical Papers. ISSCC. 1999 IEEE International ,15-17 Feb. 1999
[7] Raja, M.K.; Boon, T.T.C.; Kumar, K.N.; Wong Sheng Jau, “A fully integrated variable gain 5.75-GHz LNA with on chip active balun for WLAN”, Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE , 8-10 June 2003
[8] Matinpour, B.; Chakraborty, S.; Hamai, M.; Chun, C.; Laskar, J., “A novel dc-offset cancellation technique for even-harmonic direct conversion receivers,” Microwave Symposium Digest., 2000 IEEE MTT-S International , Volume: 2 ,11-16 June 2000
[9] Yamaji, T.; Tanimoto, H.,” A 2 GHz balanced harmonic mixer for direct-conversion receivers,” Custom Integrated Circuits Conference, 1997., Proceedings of the IEEE 1997 , 5-8 May 1997
[10] Liwei Sheng; Jensen, J.C.; Larson, L.E.,” A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/downconverter,” Solid-State Circuits, IEEE Journal of , Volume: 35 , Issue: 9 , Sept. 2000
[11] Nimmagadda, K.; Rebeiz, G.M.,” A 1.9 GHz double-balanced subharmonic mixer for direct conversion receivers”, Radio Frequency Integrated Circuits (RFIC)
[12] Yamauchi, K.; Mori, K.; Nakayama, M.; Itoh, Y.; Mitsui, Y.; Ishida, O.,” A novel series diode linearizer for mobile radio power amplifiers,” Microwave Symposium Digest, 1996., IEEE MTT-S International , Volume: 2 , 17-21 June 1996
[13] Yamauchi, K.; Mori, K.; Nakayama, M.; Mitsui, Y.; Takagi, T.,” A microwave miniaturized linearizer using a parallel diode with a bias feed resistance,” Microwave Theory and Techniques, IEEE Transactions on , Volume: 45 , Issue: 12 ,Dec. 1997
[14] Yamauchi, K.; Mori, K.; Nakayama, M.; Mitsui, Y.; Takagi, T.,” A microwave miniaturized linearizer using a parallel diode,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 3 , 8-13 June 1997
[15] Yoshimasu, T.; Akagi, M.; Tanba, N.; Hara, S.,” A low distortion and high efficiency HBT MMIC power amplifier with a novel linearization technique for π/4 DPSK modulation,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997. Technical Digest 1997., 19th Annual , 12-15 Oct. 1997
[16] Noh, Y.S.; Park, C.S.,” Linearized high efficiency HBT MMIC dual band power amplifier module for L-band applications,” Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 3 , 3-6 Dec. 2001
[17] Kim, J.H.; Noh, Y.S.; Park, C.S.,” High linear HBT MMIC power amplifier with partial RF coupling to bias circuit for W-CDMA portable application,” Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. 2002 3rd International Conference on , 17-19 Aug. 2002
[18] Kim, J.H.; Noh, Y.S.; Park, C.S.,” MMIC power amplifier adaptively linearized with RF coupled active bias circuit for W-CDMA mobile terminals applications,” Microwave Symposium Digest, 2003 IEEE MTT-S International , Volume: 3 , 8-13 June 2003
[19] Chang-Ho Lee, Joy Laskar.” Compact Ku-band transmitter design for satellite communication applications : from system analysis to hardware implementation,” Kluwer Academic Publishers, 2002
[20] Mernyei, F.; Pardoen, M.; Hoss, W.; Darrer, F.,” Fully integrated RF VCO for wireless transceivers,” Signals, Systems, and Electronics, 1998. ISSSE 98. 1998 URSI International Symposium on , 29 Sept.-2 Oct. 1998
[21] Kyranas, A.; Papananos, Y.,” A 5 GHz fully integrated VCO in a SiGe bipolar technology,” Circuits and Systems, 2000. Proceedings. ISCAS 2000 Geneva. The 2000 IEEE International Symposium on , Volume: 5 , 28-31 May 2000
[22] Cordeau, D.; Paillot, J.-M.; Cam, H.; De Astis, G.; Dascalescu, L.,” A fully monolithic SiGe quadrature voltage controlled oscillator design for GSM/DCS-PCS applications,” Radio Frequency Integrated Circuits (RFIC) Symposium, 2002 IEEE , 2-4 June 2002
[23] Stadius, K.; Kaunisto, R.; Porra, V.,” Monolithic tunable capacitors for RF applications”, Circuits and Systems, 2001. ISCAS 2001. The 2001 IEEE International Symposium on , Volume: 1 , 6-9 May 2001
[24] Application note 57-1,” Fundamentals of RF and Microwave Noise Figure Measurements,” Aglient Technologies
[25] Xiaojian Chen; Jun Liu; Junxian Wang, “Ka-band AlGaAs/InGaAs PHEMT monolithic low-noise amplifier”, Millimeter Wave and Far Infrared Science and Technology, 1996. Proceedings. 4th International Conference on , 12-15 Aug. 1996
[26] Hua-Shan Chou; Chieh-Chao Liu; Chen, T.H., “Ka-band monolithic GaAs PHEMT low noise and driver amplifiers”, Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 1 , 3-6 Dec. 2001
[27] Jong Seol Yuk; Byoung Gun Choi; Chul Soon Park, “Device and circuit optimization of PHEMT MMIC LNA for low power consumption”, Microwave Conference, 2001. APMC 2001. 2001 Asia-Pacific , Volume: 1 , 3-6 Dec. 2001
[28] Stephen A. Maas.” The RF and microwave circuit design cookbook,” Artech House, 1998
[29] Ang, K.S.; Baree, A.H.; Nam, S.; Robertson, I.D.,” A millimeter-wave monolithic sub-harmonically pumped resistive mixer,” Microwave Conference, 1999 Asia Pacific , Volume: 2 , Nov 1999
[30] Zirath, H.; Angelov, I.; Rorsman, N.,” A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” Microwave Symposium Digest, 1992., IEEE MTT-S International , 1-5 Jun 1992
[31] Virk, R.S.; Long Tran; Matloubian, M.; Minh Le; Case, M.G.; Ngo, C.,” A comparison of W-band MMIC mixers using InP HEMT technology,” Microwave Symposium Digest, 1997., IEEE MTT-S International , Volume: 2 , 8-13 Jun 1997
[32] Young-Gi Kim; Sung-Jae Maeng; Jin-Hee Lee; Chul-Soon Park,” A PHEMT MMIC broad-band power amplifier for LMDS,” Radio and Wireless Conference, 1998. RAWCON 98. 1998 IEEE , 9-12 Aug 1998
[33] Biedenbender, M.D.; Lee, J.L.; Tan, K.L.; Liu, P.H.; Freudenthal, A.; Streit, D.C.; Luong, G.; Lai, R.; Aust, M.V.; Allen, B.; Lin, T.S.; Yen, H.C.,” A power HEMT production process for high-efficiency Ka-band MMIC power amplifiers,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1993. Technical Digest 1993., 15th Annual , 10-13 Oct 1993
[34] Lai, R.; Grundbacher, R.; Barsky, M.; Oki, A.; Siddiqui, M.; Pitman, B.; Katz, R.; Tran, P.; Callejo, L.; Streit, D.,” Extremely high P1dB MMIC amplifiers for Ka-band applications,” Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 2001. 23rd Annual Technical Digest , 2001
指導教授 邱煥凱(Hwann-Kaeo Chiou) 審核日期 2004-7-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明