參考文獻 |
[1] Y.-T. Zhou and R. Chellappa, Artificial neural networks for computer vision (Springer Science & Business Media, 2012), Vol. 5.
[2] R. J. Mammone, Artificial neural networks for speech and vision (Chapman & Hall, 1994), Vol. 4.
[3] S. Chopra, D. Yadav, and A. Chopra, "Artificial Neural Networks Based Indian Stock Market Price Prediction: Before and After Demonetization," J Swarm Intel Evol Comput 8, 2 (2019).
[4] P. Covington, J. Adams, and E. Sargin, "Deep Neural Networks for YouTube Recommendations," in Proceedings of the 10th ACM Conference on Recommender Systems, (ACM, Boston, Massachusetts, USA, 2016), pp. 191-198.
[5] M. Havaei, A. Davy, D. Warde-Farley, A. Biard, A. Courville, Y. Bengio, C. Pal, P.-M. Jodoin, and H. Larochelle, "Brain tumor segmentation with Deep Neural Networks," Medical Image Analysis 35, 18-31 (2017).
[6] D. C. Kim, A. Hermerschmidt, P. Dyachenko, and T. Scharf, Design and analysis of binary fan-out gratings based on step-transition perturbation approach, SPIE LASE (SPIE, 2019), Vol. 10904.
[7] A. Y. Piggott, J. Lu, T. M. Babinec, K. G. Lagoudakis, J. Petykiewicz, and J. Vučković, "Inverse design and implementation of a wavelength demultiplexing grating coupler," Scientific Reports 4, 7210 (2014).
[8] G. Bao, D. C. Dobson, and J. A. Cox, "Mathematical studies in rigorous grating theory," JOSA A 12, 1029-1042 (1995).
[9] D. C. Dobson, "Optimal shape design of blazed diffraction gratings," Applied Mathematics and Optimization 40, 61-78 (1999).
[10] L. D. Khalaf and A. F. Peterson, "Performance of the simulated annealing and genetic algorithms for the design of periodic devices," International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 7, 108-116 (1997).
[11] K. Yao, R. Unni, and Y. Zheng, "Intelligent nanophotonics: merging photonics and artificial intelligence at the nanoscale," Nanophotonics 8, 339-366 (2019).
[12] J. Jiang, J. Cai, G. P. Nordin, and L. Li, "Parallel microgenetic algorithm design for photonic crystal and waveguide structures," Opt. Lett. 28, 2381-2383 (2003).
[13] L. Sanchis, A. Håkansson, D. López-Zanón, J. Bravo-Abad, and J. Sánchez-Dehesa, "Integrated optical devices design by genetic algorithm," Applied Physics Letters 84, 4460-4462 (2004).
[14] J. Robinson and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE transactions on antennas and propagation 52, 397-407 (2004).
[15] J. S. Jensen and O. Sigmund, "Topology optimization for nano‐photonics," Laser & Photonics Reviews 5, 308-321 (2011).
[16] D. Bertsimas and O. Nohadani, "Robust optimization with simulated annealing," Journal of Global Optimization 48, 323-334 (2010).
[17] W. Ma, F. Cheng, and Y. Liu, "Deep-learning-enabled on-demand design of chiral metamaterials," ACS nano 12, 6326-6334 (2018).
[18] I. Malkiel, M. Mrejen, A. Nagler, U. Arieli, L. Wolf, and H. Suchowski, "Plasmonic nanostructure design and characterization via Deep Learning," Light: Science & Applications 7, 60 (2018).
[19] D. Liu, Y. Tan, E. Khoram, and Z. Yu, "Training Deep Neural Networks for the Inverse Design of Nanophotonic Structures," ACS Photonics 5, 1365-1369 (2018).
[20] J. M. Zurada, Introduction to artificial neural systems (West publishing company St. Paul, 1992), Vol. 8.
[21] I. A. Basheer and M. Hajmeer, "Artificial neural networks: fundamentals, computing, design, and application," Journal of Microbiological Methods 43, 3-31 (2000).
[22] J. W. Kalat, Biological psychology (2016).
[23] S. S. Haykin, Neural networks and learning machines (Pearson education Upper Saddle River, 2009).
[24] Wikipedia contributors, "All-or-none law" (Wikipedia, The Free Encyclopedia, 15 June 2019 08:19 UTC), retrieved 19 July 2019 19:09 UTC,https://en.wikipedia.org/w/index.php?title=All-or-none_law&oldid=901929586.
[25] D. O. Hebb, The organization of behavior: a neuropsychological theory (Science Editions, 1962).
[26] F. Rosenblatt, "The perceptron: a probabilistic model for information storage and organization in the brain," Psychological review 65, 386 (1958).
[27] M. Minsky, S. A. Papert, and L. Bottou, Perceptrons: An Introduction to Computational Geometry (MIT Press, 2017).
[28] G. E. Hinton, "Learning distributed representations of concepts," in Proceedings of the eighth annual conference of the cognitive science society, (Amherst, MA, 1986), 12.
[29] 李開復 and 王詠剛, 人工智慧來了 (天下文化, 台灣, 2017).
[30] M. Paluszek and S. Thomas, MATLAB machine learning (Apress, 2016).
[31] 斎藤康毅, Deep Learning:用Python進行深度學習的基礎理論實作 (歐萊禮 台灣, 2017).
[32] M. T. Hagan and M. B. Menhaj, "Training feedforward networks with the Marquardt algorithm," IEEE transactions on Neural Networks 5, 989-993 (1994).
[33] H. B. Demuth, M. H. Beale, O. De Jess, and M. T. Hagan, Neural network design (Martin Hagan, 2014).
[34] Y. S. Abu-Mostafa, M. Magdon-Ismail, and H.-T. Lin, Learning from data (AMLBook New York, NY, USA:, 2012), Vol. 4.
[35] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, "Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings," J. Opt. Soc. Am. A 12, 1068-1076 (1995).
[36] M. Moharam and T. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," JOSA 71, 811-818 (1981).
[37] M. H. Beale, M. T. Hagan, and H. B. Demuth, Neural network toolbox user’s guide, The MathWorks Inc (2017).
[38] J. Park and I. W. Sandberg, "Universal approximation using radial-basis-function networks," Neural computation 3, 246-257 (1991).
[39] H.-T. Chen, A. J. Taylor, and N. Yu, "A review of metasurfaces: physics and applications," Reports on progress in physics 79, 076401 (2016).
[40] S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. Hung Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nature Communications 8, 187 (2017).
[41] M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
[42] G. M. Akselrod, J. Huang, T. B. Hoang, P. T. Bowen, L. Su, D. R. Smith, and M. H. Mikkelsen, "Large‐area metasurface perfect absorbers from visible to near‐infrared," Advanced Materials 27, 8028-8034 (2015).
[43] X. Ni, Z. J. Wong, M. Mrejen, Y. Wang, and X. Zhang, "An ultrathin invisibility skin cloak for visible light," Science 349, 1310-1314 (2015).
[44] L. Huang, S. Zhang, and T. Zentgraf, "Metasurface holography: from fundamentals to applications," Nanophotonics 7, 1169-1190 (2018).
[45] M. Mehmood, S. Mei, S. Hussain, K. Huang, S. Siew, L. Zhang, T. Zhang, X. Ling, H. Liu, and J. Teng, "Visible‐frequency metasurface for structuring and spatially multiplexing optical vortices," Advanced Materials 28, 2533-2539 (2016).
[46] L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. Zhang, "Dispersionless Phase Discontinuities for Controlling Light Propagation," Nano Letters 12, 5750-5755 (2012).
[47] A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nature Nanotechnology 10, 937 (2015).
[48] N. Yu and F. Capasso, "Flat optics with designer metasurfaces," Nature Materials 13, 139 (2014).
[49] Z. e. Bomzon, G. Biener, V. Kleiner, and E. Hasman, "Space-variant Pancharatnam–Berry phase optical elements with computer-generated subwavelength gratings," Opt. Lett. 27, 1141-1143 (2002).
[50] X. Ding, F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C. W. Qiu, and A. Alù, "Ultrathin Pancharatnam–Berry metasurface with maximal cross‐polarization efficiency," Advanced Materials 27, 1195-1200 (2015).
[51] G. T. Nemetallah, R. Aylo, and L. A. Williams, Analog and digital holography with MATLAB (SPIE press, 2015).
[52] A. Taflove and S. C. Hagness, Computational electrodynamics: the finite-difference time-domain method (Artech house, 2005).
[53] K. Yee, "Numerical solution of initial boundary value problems involving Maxwell′s equations in isotropic media," IEEE Transactions on antennas and propagation 14, 302-307 (1966).
[54] Z. Liu, D. Zhu, S. P. Rodrigues, K.-T. Lee, and W. Cai, "Generative Model for the Inverse Design of Metasurfaces," Nano Letters 18, 6570-6576 (2018). |