博碩士論文 107622008 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.17.28.48
姓名 蘇恆毅(Heng-Yi Su)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 動態破裂模擬解析1935新竹台中地震
(The multi-fault rupture process of 1935 Hsinchu-Taichung Earthquake, Taiwan revealed from dynamic modeling)
相關論文
★ 台灣地區中大型地震震源參數分析★ 台灣北部地區之隱沒樣貌
★ 九二一集集地震之餘震(Mw≧6.0)震源破裂滑移分佈★ 利用雙差分地震定位演算法重新定位過去十年台灣中、大型地震之餘震
★ 九二一集集地震三維震源過程與震波傳遞分析★ 台灣弧陸碰撞構造之地殼及頂部地函的三維S波衰減模型
★ 集集地震之震前、同震及震後變形模式研究★ 台灣地震震源尺度分析:2003年規模>6.0地震分析
★ 使用震源機制逆推台灣地區應力分區狀況★ 地震水井水力學之理論模式改良與發展及同震水位資料分析
★ 台灣東北部外海地震之三維強地動模擬★ 利用臨時寬頻地震網觀測嘉義地區淺層地殼之非均向性
★ 中大規模地震斷層參數之同步求解★ 集集地震同震及震後應力演化與地震活動之相關性
★ 2005 年宜蘭雙主震之震源破裂滑移分析★ 1999 集集地震後之黏彈性鬆弛效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣存在著許多斷層分佈包括已知的地表斷層線以及盲斷層,因此了解基於何種物理條件下會造成多重斷層的破裂是極為重要的課題。斷層動態破裂模擬有助於了解斷層破裂面上的物理機制,隨著計算資源以及理論方法的優化,多斷層的破裂模擬也得以實現。 芮氏規模7.1之新竹台中地震發生在1935年4月21號,為台灣歷史上造成大規模傷亡的嚴重災害之一,同時也是存在著複雜斷層幾何構造的經典案例之一。了解1935地震的多重斷層破裂是基於何種物理條件有助於日後的地震危害度分析。根據現地的野外調查,地震發生後,地表有兩條主要的斷層破裂,分別為逆衝機制的獅潭斷層以及右移機制的屯子腳斷層,但震央並不在這兩條地表破裂線上,這也暗示著有盲斷層的存在。顏銘萱等人(2016)利用1935年前後的三角測量所得到之地表位移作有限斷層逆推得到最佳的斷層模型解顯示總共有四個斷層:獅潭斷層、屯子腳斷層以及兩條斷層中間的兩個不相連的盲斷層分別傾向東邊以及西邊。本研究中,我們針對兩種可能的斷層模型,並使用異質性之初始應力設置來計算錯動量分佈以及破裂速度並與過去的運動學逆推結果做比對。第一個模型A為參考顏等人提出的最佳斷層模型;第二個模型B則為加入一個連接斷層在兩個不相連的盲斷層中間。結果顯示兩種模型在錯動量分佈以及理論規模都可以符合觀測紀錄,但在應力設置時模型A在北邊的盲斷層需給定一個極高的應力值,才能使破裂從初始斷層跳躍到北邊的斷層,而模型B則可以利用較合理的應力值來使所有斷層破裂,然而在地表變形模擬方面,模型B明顯因為多了一塊連接斷層而造成整體的誤差值變大。這也暗示著模型A可能較為合理但同時也得滿足在部分區域需累積極高的應力。除此之外,兩者的震源時間函數有明顯的差異,本研究中也進一步利用波形模擬來解析兩個模型的差異並且根據模擬的結果來討論動態破裂模擬中參數的調整。結果顯示,兩個模型結果在體波的部分較相符觀測波形,暗示著在動態破裂模擬的震源參數結果是符合實際的情況。
摘要(英) For a tectonically active collision environment, the island of Taiwan is populated with identified active faults and seismogenic structure within deeper depth without surface rupture. Historical severe damage earthquakes suggest the possibility of the multi-fault (seismogenic structure) ruptures. Understanding the mechanism of multi-fault rupture is an imperative target. Earthquake dynamic rupture modeling provides key element on understanding the physics of earthquake initiation and propagation. Also, through the advanced computational resources and methodology, the multi-fault rupture simulation becomes possible. The severe Hsinchu-Taichung Earthquake with local magnitude of 7.1 occurred on April 21st, 1935 from multi-fault rupture. Understanding the physical rupture process of this event might shed light on the future identification on fault system from multiple faults, and hints for seismic hazard potential evaluation. Historical data in geological investigation suggests this event involved two major faults: the Shihtan reverse fault and the Tuntzuchiao right-lateral strike-slip fault, both with ruptures to the surface. The hypocenter, however, did not appear to have been on either of these structures, suggesting the existence of unobserved blind fault. Yen (NCU, MS thesis, 2016) performed a finite-fault inversion that constructed a possible fault model by comparing the synthetic and observed surface displacement, and leveling data. The optimum model suggested the event was resulted from a fault system, which consists of four segments, including both reverse and strike slip fault, with the rupture-jumping between two blind faults that have opposite direction of dip, and thus increasing separation with depth. After construction of dynamic fault models with several trials of reasonable dynamic parameters, in this study, we propose two possible dynamic fault models, both associated with a heterogeneous pre- stress designed to produce slip similar to that of the inversion result. Model A is from geometries modified from Yen’s study as two faults with surface ruptures and two blind faults (jumping model). Model B is assuming a linking fault between two blind faults (linking model). Through further refinement of dynamic parameters, the correlation between the slip pattern derived from the dynamic model and inversion model, along with the jumping phenomenon, are used as critical factors in evaluating the reasonableness of our dynamic rupture model. We further examine several synthetic results with observation including surface displacement and seismogram to help us to understand the source characteristics of 1935 earthquake.
關鍵字(中) ★ 動態破裂模擬
★ 1935新竹台中地震
★ 多重斷層破裂
關鍵字(英) ★ Dynamic rupture simulation
★ 1935 Hsinchu-Taichung Earthquake
★ Multiple-fault rupture
論文目次 摘要 II
致謝 IV
目錄 V
圖目錄 IX
第一章 緒論 1
1-1 研究動機與目的 1
1-2 區域地質背景 3
第二章 1935新竹台中地震 6
2-1 地震概述與文獻回顧 6
2-2 地震斷層 7
2-2-1屯子腳斷層 7
2-2-2獅潭斷層 8
2-3 1935年新竹台中地震歷史紀錄 8
2-4測站場址參數 9
2-5-1大森式二倍強震儀 9
2-5-2大森式水平地震儀 9
2-5-1今村式二倍強震儀 9
2-5-1威赫式地震儀 10
2-5 三角測量資料 10
第三章 研究方法 23
3-1 斷層破裂動力學模擬 23
3-1-1雙倍格點有限元素法(Grid-double Finite-Element Technique) 23
3-1-2自發破裂模擬(Spontaneous Rupture Simulation) 24
3-2 理論地震波形模擬 25
3-2-1 頻率-波數積分法(Frequency-Wavenumber Integration Method) 25
3-2-2 速度模型與理論地震波形 27
3-3 研究流程 27
第四章 1935年新竹台中地震破裂動態模擬 32
4-1 斷層破裂模型與模擬參數 32
4-1-1 斷層的幾何構造 32
4-1-2 斷層面上之初始應力設置 33
4-1-3 斷層面上之摩擦定律(Friction Law) 34
4-2 動態破裂模擬應力參數測試 34
4-3 動態破裂模擬結果與討論 35
4-3-1 Model A 35
4-3-2 Model B 35
4-3-3 Model A與Model B之比較 36
第五章 理論地震波形與歷史紀錄之比較 52
5-1 參數與模型設定 52
5-2 理論地震波形與歷史紀錄波形之比較 53
第六章 最佳模型(Model A)之討論 62
第七章 結論與建議 67
參考文獻 69
附錄A 77
附錄B 80
參考文獻 Andrews, D. J. (1976). Rupture propagation with finite stress in antiplane strain. Journal of Geophysical Research, 81(20), 3575-3582.
Barall, M. (2009). A grid-doubling finite-element technique for calculating dynamic three-dimensional spontaneous rupture on an earthquake fault. Geophysical Journal International, 178(2), 845-859.
Barall, M., & Harris, R. A. Electronic Supplement to Metrics for Comparing Dynamic Earthquake Rupture Simulations.
Ben-Menahem, A., & Singh, S. J. (1968). Multipolar elastic fields in a layered half space. Bulletin of the Seismological Society of America, 58(5), 1519-1572.
Boore, D. M. (1972). Finite difference methods for seismic wave propagation in heterogeneous materials. Methods in computational physics, 11, 1-37.
Burridge, R., & Knopoff, L. (1967). Model and theoretical seismicity. Bulletin of the Seismological Society of America, 57(3), 341-371.
Coulomb, C. A. (1773) Essai sur une application des regles de maximis et minimis a quelques problemes de statique relatifs a l’architecture (essay on maximums and minimums of rules to some static problems relating to architecture), vol 7. Mémoires de mathématique et physique presenté à l′Acádemie des sciences par savantes étrangères, pp 343–382
Das, S., & Aki, K. (1977). A numerical study of two-dimensional spontaneous rupture propagation. Geophysical journal international, 50(3), 643-668.
Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bulletin of the Seismological Society of America, 72(6A), 1881-1902.
Dieterich, J. H. (1978). Time-dependent friction and the mechanics of stick-slip. In Rock Friction and Earthquake Prediction (pp. 790-806). Birkhäuser, Basel.
Dieterich, J. H. (1979). Modeling of rock friction: 1. Experimental results and constitutive equations. Journal of Geophysical Research: Solid Earth, 84(B5), 2161-2168.
ERI (1936). Paper and reports on the Formosa Earthquake of 1935. Bulletin of the Earthquake Research Institute, Tokyo University, Supplements Vol. III, 238.
Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research: Solid Earth, 84(B5), 2348-2350.
Harkrider, D. G. (1964). Surface waves in multilayered elastic media I. Rayleigh and Love waves from buried sources in a multilayered elastic half-space. Bulletin of the Seismological Society of America, 54(2), 627-679.
Harris, R. A., & Day, S. M. (1997). Effects of a low-velocity zone on a dynamic rupture. Bulletin of the Seismological Society of America, 87(5), 1267-1280.
Harris, R. A., Barall, M., Archuleta, R., Dunham, E., Aagaard, B., Ampuero, J. P., Bhat, H., Cruz-Atienza, V., Dalguer L., Dawson, P., Day, S. M., Duan, B., Ely, G., Kaneko, Y., Kase, Y., Lapusta, N., Liu, Y., Ma, S., Oglesby, D. D., Olsen, K., Pitarka, A., Song, S., & Templeton, E. (2009). The SCEC/USGS dynamic earthquake rupture code verification exercise. Seismological Research Letters, 80(1), 119-126.
Harris, R. A., Barall, M., Aagaard, B., Ma, S., Roten, D., Olsen, K., Duan, B., Liu, D., Luo, B., Bai, K., Ampuero, J. P., Kaneko, Y., Gabriel, A. A., Duru, K., Ulrich, T., Wollherr, S., Shi, Z., Dunham, E., Bydlon, S., Zhang, Z., Chen, X., Somala, S. N., Pelties, C., Tago, J., Cruz‐Atienza, V. N., Kozdon, J., Daub, E., Aslam, K., Kase, Y., Withers, K., & Dalguer, L. (2018). A suite of exercises for verifying dynamic earthquake rupture codes. Seismological Research Letters, 89(3), 1146-1162.
Haskell, N. A. (1953). The dispersion of surface waves on multilayered media. Bulletin of the seismological Society of America, 43(1), 17-34.
Haskell, N. A. (1963). Radiation pattern of Rayleigh waves from a fault of arbitrary dip and direction of motion in a homogeneous medium. Bulletin of the Seismological Society of America, 53(3), 619-642.
Haskell, N. A. (1964a). Total energy and energy spectral density of elastic wave radiation from propagating faults. Bulletin of the Seismological Society of America, 54(6A), 1811-1841.
Haskell, N. A. (1964b). Radiation pattern of surface waves from point sources in a multi-layered medium. Bulletin of the Seismological Society of America, 54(1), 377-393.
Huang, B. S., & Yeh, Y. T. (1992). Source geometry and slip distribution of the April 21, 1935 Hsinchu-Taichung, Taiwan earthquake. Tectonophysics, 210(1-2), 77-90.
Huang, H. H., Wu, Y. M., Song, X., Chang, C. H., Lee, S. J., Chang, T. M., & Hsieh, H. H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Hsu, M. T. (1971). Seismicity of Taiwan and some related problems. Bulletin of the International Institute of Seismology and Earthquake Engineering, 8, 41-160.
Lin, Y. N. (2005). Surface deformation and seismogenic structure model of the 1935 Hsinchu‐Taichung earthquake (Mgr=7.1) in Miaoli, northwestern Taiwan. MS thesis, Institute of Geosciences, National Taiwan University, 1-82.
Ida, Y. (1972). Cohesive force across the tip of a longitudinal‐shear crack and Griffith′s specific surface energy. Journal of Geophysical Research, 77(20), 3796-3805.
Kennett, B. L. N. (1974). Reflections, rays, and reverberations. Bulletin of the Seismological Society of America, 64(6), 1685-1696.
Kyriakopoulos, C., Oglesby, D. D., Funning, G. J., & Ryan, K. J. (2017). Dynamic rupture modeling of the M7. 2 2010 El Mayor‐Cucapah earthquake: Comparison with a geodetic model. Journal of Geophysical Research: Solid Earth, 122(12).
Kyriakopoulos, C., Oglesby, D. D., Rockwell, T. K., Meltzner, A. J., Barall, M., Fletcher, J., & Tulanowski, D. (2019). Dynamic rupture scenarios in the Brawley Seismic Zone, Salton Trough, southern California. Journal of Geophysical Research: Solid Earth.
Ma, S., Custódio, S., Archuleta, R. J., & Liu, P. (2008). Dynamic modeling of the 2004 Mw 6.0 Parkfield, California, earthquake. Journal of Geophysical Research: Solid Earth, 113(B2).
Miyabe, N., Hukunage, M. and Sato, M. (1938). Crustal deformations in central Taiwan, Part. 7. Bulletin of Earthquake Research Institute, Tokyo University, 16, 578-S96.
Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (1998). Earthquakes on dipping faults: the effects of broken symmetry. Science, 280(5366), 1055-1059.
Oglesby, D. D., Archuleta, R. J., & Nielsen, S. B. (2000). The three-dimensional dynamics of dipping faults. Bulletin of the Seismological Society of America, 90(3), 616-628.
Oglesby, D. D. (2005). The dynamics of strike-slip step-overs with linking dip-slip faults. Bulletin of the Seismological Society of America, 95(5), 1604-1622.
Ryan, K. J., Geist, E. L., Barall, M., & Oglesby, D. D. (2015). Dynamic models of an earthquake and tsunami offshore Ventura, California. Geophysical Research Letters, 42(16), 6599-6606.
Sato, R. (1971). Crustal deformation due to dislocation in a multi-layered medium. Journal of Physics of the Earth, 19(1), 31-46.
Seriani, G., & Priolo, E. (1994). Spectral element method for acoustic wave simulation in heterogeneous media. Finite elements in analysis and design, 16(3-4), 337-348.
Singh, S. J. (1970). Static deformation of a multilayered half‐space by internal sources. Journal of Geophysical Research, 75(17), 3257-3263.
Smith, W. D. (1975). The application of finite element analysis to body wave propagation problems. Geophysical Journal International, 42(2), 747-768.
Steketee, J. A. (1958). On Volterra′s dislocations in a semi-infinite elastic medium. Canadian Journal of Physics, 36(2), 192-205.
Thomson, W. T. (1950). Transmission of elastic waves through a stratified solid medium. Journal of applied Physics, 21(2), 89-93.
Wang, C. Y., Chen, G. P., & Jong, D. T. (1994). The detection of active faults on Taiwan using shallow reflection seismics. Terrestrial, Atmospheric and Oceanic Sciences, 5(2), 277-293.
Zhu, L., & Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophysical Journal International, 148(3), 619-627.
台灣總督府(1936)。昭和十年台灣震災誌,東京台灣總督府出版。
王雯君(2007)。以反射震測法研究屯子腳斷層之平移構造形貌,國立中央大學地球科學系碩士論文。
石同生、張雲翔(2005)。屯子腳斷層,經濟部中央地質調查所施政計畫報告,活動 斷層調查報告,經濟部中央地質調查所。
張麗旭(1955)。台灣之地層。台灣研究叢刊,第三十六種,臺灣銀行經濟研究所出版,第26-49 頁。
張憲卿(1994)。台灣地質圖說明書,圖幅第一十七號,大甲。經濟部中央地質調查所,63 頁。
鄭世楠、王子賓、江嘉豪、蔡宜宏、潘昌志(2013)。臺灣地區歷史地震波形與紀錄之整理,中央氣象局地震記述報告彙編,第 62 卷,369-384 頁。
鄭世楠、江嘉豪、陳燕玲。台灣地區歷史地震資料的建置,清雲科技大學與中央氣象局地震測報中心。
鄭世楠、張建興、吳健富、葉永田、辛在勤(1997)。日據時期臺灣地區地震資料之整理(Ⅰ)、(Ⅱ),中央研究院地球科學研究所和中央氣象局,IESCR97-03、IESCR97-04,1,532頁。
大江二郎(1936)。大安溪地震調查報告,礦物及地質調查報告第四號,臺灣總督府殖產局。(日文)
大塚彌之助(1936)。昭和10年4月21日臺灣中部地方發生之地震所伴生之地震斷層,附地震斷層之諸特徵。東京大學地震研究所彙報別冊,第三號,22-74頁。(日文)
余水倍、侯財源、蔡義本(1977)。苗栗地區地震研究報告。中央研究院地球科學研究所籌備處出版,48頁。
林燈河(1987)。1935 年新竹-台中烈震的震源機制,國立中央大學地球物理研究所碩士論文。
顏滄波(1985)。一九三五年新竹、台中地震調查之回顧,一九三五年新竹-台中大地震五十周年紀念研討會論文集,11-17頁。
葉義雄、顏宏元、蔡義本(1983)。1935年臺灣中部地震斷層地區微震及重力調查研究, 國立中央大學地球物理學刊。
葉義雄、顏宏元、蔡義本(1985)。利用地震與重力資料分析一九三五年地震斷層。一九三五年新竹-台中大地震五十周年紀念研討會論文集,68-82頁。
柳義倩、陳建良、黃文正、張雲翔、林偉雄(2005)。獅潭、神桌山斷層,經濟部中 央地質調查所施政計畫報告,活動斷層調查報告,經濟部中央地質調查所。
顏銘萱(2016)。1935年新竹-臺中烈震之震源破裂特性分析與三維地震波模擬,國立中央大學地球科學系碩士論文。
董倫道(2005)。地震地質調查及活動斷層資料庫建置計畫-地球物理探勘計劃 (4/5)。經濟部中央地質調查所報告,第 94-09 號,共 187 頁。
指導教授 馬國鳳(Kuo-Fong Ma) 審核日期 2019-7-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明