博碩士論文 106226030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.15.180.175
姓名 游琇閔(Siou-Min You)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 透鏡品質檢測基於四波橫向剪切干涉儀
(Inspection for Optical Lens Quality Base on Quadri-Wave Lateral Shearing Interferometer)
相關論文
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 軟性電子阻水氣膜之有機層組成研究
★ 利用介電質-金屬對稱膜堆設計雙曲超穎材料並分析其光學特性★ 石墨烯透明導電膜與其成長模型之研究
★ 以磁控電漿輔助化學氣相沉積法製鍍有機矽阻障層之研究★ 以電漿聚合鍍製氧化矽摻碳氫薄膜應力之研究
★ 利用有限元素方法分析光譜合束器之多層介電質繞射光柵之繞射效率★ 化學氣相沉積石墨烯透明導電膜之製程與分析
★ 應用光學導納軌跡法提升太陽能選擇性吸收膜之光熱轉換效率研究★ 單晶銅成長石墨烯及其可撓性之研究
★ 高反射多層膜抗雷射損傷閥值之研究★ 高穿透類鑽碳膜之研究
★ 裝備具有低光斑的抗眩光膜層★ 利用介電係數趨近零材料設計層狀寬帶超穎吸收膜
★ 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究★ 製備超親水聚合膜在聚碳酸酯表面研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著科技的進步,鏡頭的應用也越來越廣泛,對於光學模組的品質要求也逐漸提升,但在製造的過程中難免會產生劣質品,造成透鏡產生偏心或傾斜等誤差,或是產生其他不必要的像差,因此為了達到完美的成像效果,品質的控管也是非常重要,因此我們可以透過量測波前結合計算調製傳遞函數(MTF)的方法,從這兩個資訊交錯評判鏡頭的好壞。本文以四波橫向剪切干涉儀(QWLSI) 波前檢測儀,結合計算MTF進行檢測,因為QWLSI解析度和測量精度較高、擁有較大的動態範圍、檢測快速以及架構簡單與容易操作等多項優點,故以此技術作為基礎來檢測波前像差以及利用波前像差重建MTF,評估待測物之光學成像品質。
對於QWLSI之量測方法,首先,QWLSI須選擇放置在待測樣品後發散光的範圍進行量測,使還原波前的計算過程能完整的採集資訊,並且利用尋找干涉點對比度最佳位置搭配自動軸控決定CCD測量位置,校正量測誤差,以及分析框選掩模之重要性,引入自動找圓演算法,自動框選干涉圖圓心,並且多次測試自動找圓演算法,其找到的圓心位置與半徑標準差皆在0.5 pixel以下,利用演算法可避免人為上的實驗誤差,因此最後量測可以結合自動軸控CCD量測位置以及自動找圓達到自動化檢測。接著測試QWLSI對於波前量測之穩定性達1/449 waves (RMS)精確度達1/246 waves (RMS),動態範圍之量測至少可達160 μm,並且與目前公認的Trioptics商用MTF量測機台相比其誤差低於1.3 %。因此透過結合擁有特有優勢的QWLSI量測技術與計算MTF作為鏡頭檢測技術,能夠有效的評判鏡頭的好壞,並且搭配自動化的技術,未來的趨勢有機會能夠成為線上的檢測產品。
摘要(英) With the progress of technology, the application of lenses has become more extensive, and the quality requirements for optical modules have gradually increased. However, in the process of manufacturing, inferior products are inevitably induced, causing errors such as eccentricity or tilting of the lens, or Other unnecessary aberrations. Therefore, quality control of lens is very important to achieve perfect imaging. And this paper shows that we can calculate the modulation transfer function (MTF) by measuring the wavefront, to compare the lenses in good or bad from the information of wavefront and MTF. In this paper, the four-wave transverse shear interferometer (QWLSI) wavefront detector is combined with the calculation of MTF for detection, because QWLSI has high resolution and measurement accuracy, large dynamic range, fast detection, simple structure and easy operation. As a result, the technique is used as a basis to detect wavefront aberrations and to reconstruct MTF using wavefront aberrations to evaluate the optical imaging quality of the object under test.
For the measurement method of QWLSI, firstly, QWLSI must select the range of diverging light to place after the sample to be tested for measurement, so that the calculation process of the restored wavefront can completely collect information, and then using to find the placement of the better contrast of the interference point to determine the CCD measurement position and to match the automatic axis to control it. Next, the paper analyzes the importance of the frame selection mask. It introduces an automatic circle finding algorithm to select the center of the interferogram automatically, and then tests the algorithm to find the center of the circle repeatedly. The standard deviation of position and radius is below 0.5 pixel. The algorithm can avoid artificial error. Therefore, the final measurement can be combined with the automatic axis control CCD measurement position and automatic circle finding to achieve automatic detection. After testing, QWLSI is tested the stability of the wavefront measurement to 1/449 waves (RMS), the accuracy of it to 1/246 waves (RMS), the dynamic range measurement of at least 160 μm, and an error of less than 1.3% compared with the commercial measurement machine of MTF (Trioptics).
Therefore, by combining the QWLSI measurement technology with advantages and the calculation of MTF as the lens detection technology, it is possible to effectively judge the quality of the lens, and it is with the automation technology, the future trend has the opportunity to become an online inspection product.
關鍵字(中) ★ 波前
★ 剪切干涉
★ 調製傳遞函數
關鍵字(英)
論文目次 摘要 i
ABSTRACT iii
誌謝 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.1.1 鏡頭檢測發展史 1
1.1.2 調製傳遞函數發展史 4
1.2 研究動機 5
1.3 研究目的 7
1.4 研究架構 8
第二章 波前重建理論及量測方法 9
2.1 幾何像差理論 9
2.1.1 球面像差 10
2.1.2 慧差 11
2.1.3 像散 12
2.1.4 場曲 12
2.1.5 畸變 13
2.1.6 色差 14
2.2 Zernike多項式 14
2.3 波前量測技術 18
2.3.1 QWLSI量測原理 18
2.3.2 波前檢測技術比較 24
2.4 波前像差計算調製傳遞函數 26
2.4.1 調製傳遞函數定義 27
2.4.2 廣義出瞳函數 31
2.4.3 點擴散函數 32
2.4.4 光學傳遞函數 34
2.4.5 MTF曲線 36
第三章 實驗架設與量測分析 38
3.1 實驗設備及規格 38
3.1.1 QWLSI波前檢測 38
3.1.2 Trioptics MTF量測機台 40
3.2 實驗架構 41
3.3 量測方法與校正 43
3.3.1 量測方法 43
3.3.2 校正量測位置 44
3.3.3 校正Mask位置 46
3.4 實驗數據分析 48
3.4.1 波前穩定性及精確度測試 48
3.4.2 與MTF商用機台比較 49
第四章 結論 51
參考文獻 53
參考文獻 [1] M. C. Li, D. S. Wan, and C. C. Lee, "Application of white-light scanning interferometer on transparent thin-film measurement," Applied optics, vol. 51, pp. 8579-8586, 2012.
[2] J. Schwider, R. Burow, K.-E. Elssner, J. Grzanna, R. Spolaczyk, and K. Merkel, "Digital wave-front measuring interferometry: some systematic error sources," Applied optics, vol. 22, pp. 3421-3432, 1983.
[3] L. N. Thibos, "Principles of hartmann-shack aberrometry," Journal of Refractive Surgery, 16, pp.563-565, 2000.
[4] 李玉珍, 魏锐利, and 朱煌, "波前像差技术及其在屈光手术中的应用," 2006.
[5] J. A. Koch, R. W. Presta, R. A. Sacks, R. A. Zacharias, E. S. Bliss, M. J. Dailey, et al., "Experimental comparison of a Shack–Hartmann sensor and a phase-shifting interferometer for large-optics metrology applications," Applied optics, vol. 39, pp. 4540-4546, 2000.
[6] J. Liang, B. Grimm, S. Goelz, and J. F. Bille, "Objective measurement of wave aberrations of the human eye with the use of a Hartmann–Shack wave-front sensor," JOSA A, vol. 11, pp. 1949-1957, 1994.
[7] J. Primot and N. Guérineau, "Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard," Applied optics, vol. 39, pp. 5715-5720, 2000.
[8] B. Wattellier, W. Boucher, S. Velghe, and P. Francou, "High dynamic wave front sensing for lens group characterization," Proc. SPIE, Optifab, 2011.
[9] F. Abbott, "Practical Aspects Of Transfer Function Measurement," in Modulation Transfer Function, pp. 143-157, 1968.
[10] M. A. Berkovitz, "Edge gradient analysis OTF accuracy study," in Modulation Transfer Function, pp. 115-127, 1968.
[11] S. Lerman, "Application of the fast Fourier transform to the calculation of the optical transfer function," in Modulation Transfer Function, pp. 51-73, 1968.
[12] V. N. Mahajan, "Optical Imaging and Aberrations: Ray Geometrical Optics," vol. 45, SPIE, 1998.
[13] J.C. Wyant and K. Creath, "Basic Wavefront Aberration Theory for Optical Metrology," Applied Optics and Optical Eng, vol XI, pp. 27- 39, 1992
[14] J. H. Lee, Y. C. Lee, and E. C. Kang, "Investigation of Performance Degradation of Shack Hartmann Wavefront Sensing Due to Pupil Irradiance Profile," Journal of the Optical Society of Korea, vol. 10, pp. 16-22, 2006.
[15] D. Malacara, “Optical Shop Testing”, Wiley, New York, 1997.
[16] L. Thibos, "Handbook of Visual Optics, Draft Chapter on Standards for Reporting Aberrations of the Eye,",1999.
[17] K. Wu, C. C. Lee, N. J. Brock, and B. Kimbrough, "Multilayer thin-film inspection through measurements of reflection coefficients," Optics letters, vol. 36, pp. 3269-3271, 2011.
[18] R. H. Hudgin, "Wave-front reconstruction for compensated imaging," JOSA, vol. 67, pp. 375-378, 1977.
[19] W. H. Southwell, "Wave-front estimation from wave-front slope measurements," JOSA, vol. 70, pp. 998-1006, 1980.
[20] X.-j. Chen, L.-z. Dong, S. Wang, P. Yang, and B. Xu, "Algorithms to eliminate the influence of non-uniform intensity distributions on wavefront reconstruction by quadri-wave lateral shearing interferometers," Optics Communications, vol. 402, pp. 276-284, 2017.
[21] H. Wang, Y. Li, and K. Liu, "Approach to characterize manufacture tolerances of two-dimensional cross-phase grating," Optical Engineering, vol. 52, p. 104101, 2013.
[22] T. Ling, Y. Yang, X. Yue, D. Liu, Y. Ma, J. Bai, et al., "Common-path and compact wavefront diagnosis system based on cross grating lateral shearing interferometer," Applied optics, vol. 53, pp. 7144-7152, 2014.
[23] H. Wang, Y. Li, and K. Liu, "Misalignment effects of cross-phasegrating lateral shearing interferometer and its alignment technique," Optical Engineering, vol. 53, 054103, 2014
[24] P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Optics express, vol. 17, pp. 13080-13094, 2009.
[25] B. Mancilla-Escobar, Z. Malacara-Hernández, and D. Malacara-Hernández, "Two dimensional wavefront retrieval using lateral shearing interferometry," Optics Communications, vol. 416, pp. 100-107, 2018.
[26] P. Elias, D. S. Grey, and D. Z. Robinson, "Fourier treatment of optical processes," Josa, vol. 42, pp. 127-134, 1952.
[27] J.W. GOODMAN, "Introduction to Fourier optics. Roberts and Company Publishers," 2005.
[28] 張鎬鵬, "光學成像系統之調變轉換函數理論," 國立成功大學, 台南,2005
[29] 沈柏志, "以二次通過成像量測架構及降低誤差迭代演算法重建人眼之點擴散函數," 國立中央大學, 桃園, 2013
[30] G. D. Boreman, "Modulation Transfer Function in Optical and Electro-Optical Systems," SPIE, 2001.
指導教授 郭倩丞(Chien-Cheng Kuo) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明